Skip to main content
Log in

Reinforcing of Cement Composites by Estabragh Fibres

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series E Aims and scope Submit manuscript

Abstract

The influence of Estabragh fibres has been studied to improve the performance characteristics of the reinforced cement composites. The concrete shrinkage was evaluated by counting the number of cracks and measuring the width of cracks on the surface of concrete specimens. Although, the Estabragh fibres lose their strength in an alkali environment of cement composites, but, the ability of Estabragh fibres to bridge on the micro cracks in the concrete matrix causes to decrease the width of the cracks on the surface of the concrete samples in comparison with the plain concrete. However, considering the mechanical properties of specimens such as bending strength and impact resistance, the specimens with 0.25 % of Estabragh fibre performed better in all respects compared to the physical and mechanical properties of reinforced cement composite of concrete. Consequently, by adding 0.25 % of Estabragh fibres to the cement composite of concrete, a remarkable improvement in physical and mechanical properties of fibre-containing cement composite is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.A. Ghareaghaji, S.H. Davoodi, Mechanical damage to Estabragh fibres in the production of thermobonded layers. J. Appl. Polym. Sci. 109(5), 3062–3069 (2008)

    Article  Google Scholar 

  2. A. Bentur, S. Mindess, Fibre Reinforced Cementitious Composites, 2nd edn. (Taylor & Francis, Landon, New York, 2007), pp. 11–235

    Google Scholar 

  3. E. Holt, M. Leivo, Cracking risks associated with early age shrinkage. Cem. Concr. Compos. 26(5), 521–530 (2004)

    Article  Google Scholar 

  4. X.U. Fang, Z. Mingkai, L. Beixing, S. Weiguo, Influence of mineral admixtures on the performance of polymer modified porous concrete. J. Wuhan Univ. Technol. Mater. 25(4), 624 (2010)

    Article  Google Scholar 

  5. A. Libre Nicolas, M. Shekarchi, M. Mahoutian, P. Soroushian, Mechanical properties of hybrid fibre reinforced lightweight aggregate concrete made with natural pumice. Constr. Build. Mater. 25, 2458–2464 (2011)

    Article  Google Scholar 

  6. M. Perez-Pena, B. Mobasher, Mechanical properties of fibre reinforced lightweight concrete composites. Cem. Concr. Res. 24(6), 1121–1132 (1994)

    Article  Google Scholar 

  7. A.G.B. Ritchie, O. Kayali, The effects of fibre reinforcement on lightweight aggregate concrete, ed. by A. Neville. in Proceedings of RILEM Symposium on Fibre Reinforced Cement and Concrete. (The Construction Press, 1975), pp. 247–256

  8. O. Kayali, M.N. Haque, B. Zhu, Some characteristics of high strength fibre reinforced lightweight aggregate concrete. Cem. Concr. Compos. 25(2), 207–213 (2003)

    Article  Google Scholar 

  9. R. Bagherzadeh, A.H. Sadeghi, M. Latifi, Utilizing polypropylene fibres to improve physical and mechanical properties of concrete. Text. Res. J. 82(1), 88–96 (2011)

    Article  Google Scholar 

  10. H.R. Pakravan, M. Jamshidi, M. Latifi, Performance of fibres embedded in a cementitious matrix. J. Appl. Polym. Sci. 116, 1247–1253 (2010)

    Google Scholar 

  11. R. Bagherzadeh, H.R. Pakravan, A. Sadeghi, M. Latifi, A.A. Merati, An investigation on adding polypropylene fibres to reinforce lightweight cement composites (LWC). J. Eng. Fibres Fabr. 7(4), 13–21 (2012)

    Google Scholar 

  12. J.K. Dong, E.N. Antoine, E.T. Sherif, Comparative flexural behavior of four fibre reinforced cementitious composites. Cem. Concr. Compos. 30(10), 917–928 (2008)

    Article  Google Scholar 

  13. S.P. Shah, M. Sarigaphuti, M.E. Karaguler, Comparison of shrinkage cracking performance of different types of fibres and wiremesh, in Fibre Reinforced Concrete Developments and Innovations, ACI SP-142, (1994), pp. 1–18

  14. N. Banthia, M. Azzabi, M. Pigeon, Restrained shrinkage tests on fibre reinforced cementitious composites, in Testing of Fibre Reinforced Concrete, ACI SP-155, (1995), pp. 137–151

  15. P.S. Song, S. Hwang, B.C. Sheu, Strength properties of nylon- and polypropylene-fibre reinforced concretes. Cem. Concr. Res. 35, 1546–1550 (2005)

    Article  Google Scholar 

  16. A.M. Alhozaimy, P. Soroushian, F. Mirza, Mechanical properties of polypropylene fibre reinforced concrete and the effects of pozzolanic materials. Cem. Concr. Compos. 18, 85–92 (1996)

    Article  Google Scholar 

  17. H. Tanyildizi, Statistical analysis for mechanical properties of polypropylene fibre reinforced lightweight concrete containing silica fume exposed to high temperature. Mater. Des. 30, 3252–3258 (2009)

    Article  Google Scholar 

  18. P. Soroushian, M. Nagi, J. Hsu, Optimization of the use of lightweight aggregate in carbon fibre reinforced cement. ACI Mater. J. 89(3), 267–276 (1992)

    Google Scholar 

  19. R.V. Balendran, F.P. Zhou, A. Nadeem, A.Y.T. Leung, Influence of steel fibres on strength and ductility of normal and lightweight high strength concrete. Build. Environ. 37, 1361–1367 (2002)

    Article  Google Scholar 

  20. W.R. Malisch, Polypropylene fibres in concrete, what do the test tell us? Concr. Constr. 31, 363–368 (1986)

    Google Scholar 

  21. P.P. Kraii, A proposed test to determine the cracking potential due to drying shrinkage of concrete. Concr. Constr. 30, 775–778 (1985)

    Google Scholar 

  22. S. Mindess, G. Vondran, Properties of concrete reinforced with fibrillated polypropylene fibres under impact loading. Cem. Concr. Res. 18, 109–115 (1988)

    Article  Google Scholar 

  23. B.P. Hughes, N.I. Fattuhi, Improving the toughness of high strength cement paste with fibre reinforcement. Composite 7(4), 185–188 (1976)

    Article  Google Scholar 

  24. N. Reddy, Y. Yang, Non-traditional lightweight polypropylene composites reinforced with milkweed floss. Polym. Int. 59(7), 884–890 (2010)

    Article  Google Scholar 

  25. W. Chen, H.J.H. Brouwers, Alkali binding in hydrated Portland cement paste. Cem. Concr. Res. 40, 716–722 (2010)

    Article  Google Scholar 

  26. S. Martinez-Ramirez, A. Palomo, Microstructure studies on Portland cement pastes obtained in highly alkaline environments. Cem. Concr. Res. 31(11), 1581–1585 (2001)

    Article  Google Scholar 

  27. T. Tahereh Soleimani, A.A. Merati, M. Latifi, A.A. Ramezanianpor, Inhibition of cracks on the surface of cement mortar using Estabragh Fibres, Hindawi Publishing Corporation. Adv. Mater. Sci. Eng. (2013). doi:10.1155/2013/656109

    Google Scholar 

  28. P. Balaguru, K. Slattum, Test methods for durability of polymeric fibres in concrete and UV light exposure. Am. Concr. Inst. Spec. Publ. 155, 115–136 (1995)

    Google Scholar 

  29. N.S. Berke, M.P. Dallaire, The effect of low addition rates of polypropylene fibres on plastic shrinkage cracking and mechanical properties of concrete, in Fibre Reinforced Concrete Developments and Innovations, ACI SP-142, (1994) pp. 19–42

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Merati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merati, A.A. Reinforcing of Cement Composites by Estabragh Fibres. J. Inst. Eng. India Ser. E 95, 27–32 (2014). https://doi.org/10.1007/s40034-014-0032-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40034-014-0032-2

Keywords

Navigation