Skip to main content
Log in

Development and Analysis on Micro-Electrical Photovoltaic Model of Dye Sensitized Solar Cell for Optimized Performance

  • ORIGINAL CONTRIBUTION
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

The dynamic system of an equivalent dye sensitized solar cell electrical model is implemented to analyze the current, voltage and power characteristics. The parameters governing the working of the dye sensitized solar cell are determined for obtaining optimum efficiency. The complex process at different interfaces between the electrode, dye and electrolyte is examined using electrochemical impedance spectroscopy. The open-circuit voltage drops with the rise in cell temperature, as there is rapid growth in the reverse saturation current. The open-circuit voltage rises as the insolation level increases even though the saturation current of the recombination diode is independent of the amount of illumination. The current–voltage and electrochemical impedance spectroscopy of the proposed electrical model matches to that of experimental curve proving that the developed electrical model can be employed as a useful way for assessing the electrical properties of the dye sensitized solar cells. A generalized dye sensitized solar cell model which can be a representative of all the dye sensitized solar cell, module, and array is developed with MATLAB/Simulink. This makes it simple to simulate, examine and optimize the dynamics of a dye sensitized solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B. O’Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346), 737–40 (1991)

    Article  Google Scholar 

  2. M. Kokkonen, P. Talebi, J. Zhou, S. Asgari, S.A. Soomro, F. Elsehrawy, J. Halme, S. Ahmad, A. Hagfeldt, S.G. Hashmi, Advanced research trends in dye-sensitized solar cells. J. Mater. Chem. A 9(17), 10527–10545 (2021)

    Article  Google Scholar 

  3. S. Yun, Y. Zhang, Q. Xu, J. Liu, Y. Qin, Recent advance in new-generation integrated devices for energy harvesting and storage. Nano Energy 60, 600–619 (2019)

    Article  Google Scholar 

  4. S. Yun, Y. Qin, A.R. Uhl, N. Vlachopoulos, M. Yin, D. Li, X. Han, A. Hagfeldt, New-generation integrated devices based on dye-sensitized and perovskite solar cells. Energy Environ Sci 11(3), 476–526 (2018)

    Article  Google Scholar 

  5. M. Belarbi, B. Benyoucef, A. Benyoucef, T. Benouaz, S. Goumri-Said, Enhanced electrical model for dye-sensitized solar cell characterization. Sol. Energy 122, 700–11 (2015)

    Article  Google Scholar 

  6. S. Bera, D. Sengupta, S. Roy, K. Mukherjee, Research into dye-sensitized solar cells: a review highlighting progress in India. J. Phys. Energy. 3(3), 032013 (2021)

    Article  Google Scholar 

  7. N. Gao, L. Huang, T. Li, J. Song, H. Hu, Y. Liu, S. Ramakrishna, Application of carbon dots in dye-sensitized solar cells: a review. J. Appl. Polym. Sci. 137(10), 48443 (2020)

    Article  Google Scholar 

  8. G. Franco, J. Gehring, L.M. Peter, E.A. Ponomarev, I. Uhlendorf, Frequency-resolved optical detection of photoinjected electrons in dye-sensitized nanocrystalline photovoltaic cells. J. Phys. Chem. B 103(4), 692–698 (1999)

    Article  Google Scholar 

  9. N.J. Cherepy, G.P. Smestad, M. Gratzel, J.Z. Zhang, Ultrafast electron injection: implications for a photoelectrochemical cell utilizing an anthocyanin dye-sensitized TiO2 nanocrystalline electrode. J. Phys. Chem. B 101(45), 9342–9351 (1997)

    Article  Google Scholar 

  10. N. Papageorgiou, M. Gratzel, P.P. Infelta, On the relevance of mass transport in thin layer nanocrystalline photoelectrochemical solar cells. Solar EnergyMater. Solar Cells 44(4), 405 (1996)

    Article  Google Scholar 

  11. N. Vlachopoulos, A. Hagfeldt, I. Benesperi, M. Freitag, G. Hashmi, G. Jia, R.A. Wahyuono, J. Plentz, B. Dietzek, New approaches in component design for dye-sensitized solar cells. Sustain. Energy Fuels 5(2), 367–383 (2021)

    Article  Google Scholar 

  12. C.P. Hsu, K.M. Lee, J.T. Huang, C.Y. Lin, C.H. Lee, L.P. Wang, S.Y. Tsai, K.C. Ho, EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells. Electrochim. Acta 53(25), 7514–7522 (2008)

    Article  Google Scholar 

  13. S. Gagliardi, L. Giorgi, R. Giorgi, N. Lisi, T.D. Makris, E. Salernitano, A. Rufoloni, Impedance analysis of nanocarbon DSSC electrodes. Superlattices Microstruct. 46(1–2), 205–208 (2009)

    Article  Google Scholar 

  14. R.L. de Andrade, M.C. de Oliveira, E.C. Kohlrausch, M.J.L. Santos, Simplified and quick electrical modeling for dye sensitized solar cells: an experimental and theoretical investigation. J. Phys. Chem. Solids 116, 273–280 (2018)

    Article  Google Scholar 

  15. M. Murayama, T. Mori, Equivalent circuit analysis of dye-sensitized solar cell by using one-diode model, Effect of carboxylic acid treatment of TiO2 electrode, Japanese. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 45(1), 542–545 (2006)

    Article  Google Scholar 

  16. T. Hanmin, Z. Xiaobo, Y. Shikui, W. Xiangyan, T. Zhipeng, L. Bin, W. Ying, Y. Tao, Z. Zhigang, An improved method to estimate the equivalent circuit parameters in DSSCs. Sol. Energy 83(5), 715–720 (2009)

    Article  Google Scholar 

  17. E. Batzelis, Non-iterative methods for the extraction of the single-diode model parameters of photovoltaic modules: A review and comparative assessment. Energies 12(3), 358 (2019)

    Article  Google Scholar 

  18. A.R. Jordehi, Parameter estimation of solar photovoltaic (PV) cells: a review. Renew. Sustain. Energy Rev. 61, 354–371 (2016)

    Article  Google Scholar 

  19. S. Saadaoui, A. Torchani, M.A.B. Youssef, R. Gharbi, Fabrication, modeling and electrical characterization of natural dye sensitized solar cell under different thermal stress conditions. Optik 127(20), 10058–10067 (2016)

    Article  Google Scholar 

  20. I. Nassar-Eddine, A. Obbadi, Y. Errami, A. El Fajri, M. Agunaou, Parameter estimation of photovoltaic modules using iterative method and the Lambert W function: a comparative study. Energy Convers. Manage 119, 37–48 (2016)

    Article  Google Scholar 

  21. A. Dolara, S. Leva, G. Manzolini, Comparison of different physical models for PV power output prediction. Sol. Energy 119, 83–99 (2015)

    Article  Google Scholar 

  22. V.J. Chin, Z. Salam, K. Ishaque, Cell modelling and model parameters estimation techniques for photovoltaic simulator application: a review. Appl. Energy 154, 500–519 (2015)

    Article  Google Scholar 

  23. D. Devadiga, M. Selvakumar, P. Shetty, M.S. Santosh, Dye-sensitized solar cell for indoor applications: a mini-review. J. Electron. Mater. 50, 3187–3206 (2021)

    Article  Google Scholar 

  24. N. Mariotti, M. Bonomo, L. Fagiolari, N. Barbero, C. Gerbaldi, F. Bella, C. Barolo, Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chem. 22(21), 7168–7218 (2020)

    Article  Google Scholar 

  25. R. Eichberger, W. Frank, Ultrafast electron injection from excited dye molecules into semiconductor electrodes. Chem. Phys. 141(1), 159–173 (1990)

    Article  Google Scholar 

  26. M.E. Yeoh, K.Y. Chan, D. Knipp, Simplified electrical modeling for dye sensitized solar cells, Influences of the blocking layer and chenodeoxycholic acid additive. Solid-State Electron. 180, 107983 (2021)

    Article  Google Scholar 

  27. D. Kumar, P. Kuchhal, K.S. Parmar, Optimization of photovoltaic conversion performance of a TiO2 based dye sensitized solar cells (DSSCs). Eng. Res. Express 3(4), 045021 (2021)

    Article  Google Scholar 

  28. A.A. Zaky, H. Alhumade, D. Yousri, A. Fathy, H. Rezk, L. Givalou, P. Falaras, Modeling and optimization of triple diode model of dye-sensitized solar panel using heterogeneous marine predators algorithm. Mathematics 10(17), 3143 (2022)

    Article  Google Scholar 

  29. K.J. Singh, K.R. Kho, S.J. Singh, Y.C. Devi, N.B. Singh, S.K. Sarkar, Artificial neural network approach for more accurate solar cell electrical circuit model. Int. J. Comput. Sci. Appl. 4, 101–116 (2014)

    Google Scholar 

  30. B. Tripathi, P. Yadav, M. Kumar (2013) Effect of varying illumination and temperature on steady-state and dynamic parameters of dye-sensitized solar cell using AC impedance modeling. Int. J. Photoenergy

  31. V. Yong, S.T. Ho, R.P. Chang, Modeling and simulation for dye-sensitized solar cells. Appl. Phys. Lett. 92(14), 143506 (2008)

    Article  Google Scholar 

  32. P. Yadav, B. Tripathi, M. Lokhande, M. Kumar, Estimation of steady state and dynamic parameters of low concentration photovoltaic system. Solar Energy Mater. Solar Cells 112, 65–72 (2013)

    Article  Google Scholar 

  33. M. Gratzel, Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 44(20), 6841–6851 (2005)

    Article  Google Scholar 

  34. L. Dloczik, O. Ileperuma, I. Lauermann, Dynamic response of dye-sensitized nanocrystalline solar cells, characterization by intensity-modulated photocurrent spectroscopy. J. Phys. Chem. B 101(49), 10281–10289 (1997)

    Article  Google Scholar 

  35. P.J. Gellings, H.J. Bouwmeester, Handbook of Solid State Electrochemistry (CRC, Boca Raton, 1997)

    Google Scholar 

  36. I. Mora-Sero, J. Bisquert, F. Fabregat-Santiago, Implications of the negative capacitance observed at forward bias in nanocomposite and polycrystalline solar cells. Nano Lett 6(4), 640–650 (2006)

    Article  Google Scholar 

  37. Y. Ren, D. Sun, Y. Cao, H.N. Tsao, Y. Yuan, S.M. Zakeeruddin, P. Wang, M. Grätzel, A stable blue photosensitizer for color palette of dye-sensitized solar cells reaching 12.6% efficiency. J. Am. Chem. Soc. 140(7), 2405–2408 (2018)

    Article  Google Scholar 

  38. E. Supriyanto, H.A. Kartikasari, N. Alviati, G. Wiranto, Simulation of dye-sensitized solar cells (DSSC) performance for various local natural dye photosensitizers. IOP Conf. Ser. Mater. Sci. Eng. 515(1), 012048 (2019)

    Article  Google Scholar 

  39. Q. Wang, J.E. Moser, M. Grätzel, Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B 109(31), 14945–14953 (2005)

    Article  Google Scholar 

  40. M.K. Dutta, R.K. Sarkar, and S. Karmakar, Fabrication and characterization of CdS-Cu2S thin film heterojunction diode using chemical bath deposition technique. Bulg. Chem. Commun. 158 (2021).

  41. R.K. Sarkar, M.K. Dutta, Coupled propagation of two beams in cubic quintic nonlinear medium. Optik 227, 166093 (2021)

    Article  Google Scholar 

  42. A.B. Muñoz-García, I. Benesperi, G. Boschloo, J.J. Concepcion, J.H. Delcamp, E.A. Gibson, G.J. Meyer, M. Pavone, H. Pettersson, A. Hagfeldt, M. Freitag, Dye-sensitized solar cells strike back. Chem. Soc. Rev. 50(22), 12450–12550 (2021)

    Article  Google Scholar 

  43. R.K. Sarkar, M.K. Dutta, Analysis of breather–soliton, breather–breather and soliton–breather pair creation in saturating nonlinear media. J. Opt. 1–8 (2023)

  44. M.K. Dutta, M. Kaur, Comparative study on the role of different optical amplifiers for the quality improvement of distorted signal: a simulation approach. In: Advanced Techniques for IoT Applications: Proceedings of EAIT 2020, pp. 574–581. Springer, Singapore (2022)

  45. J. Bisquert, Theory of the impedance of electron diffusion and recombination in a thin layer. J. Phys. Chem. B 106(2), 325–333 (2002)

    Article  Google Scholar 

  46. L. Andrade, S.M. Zakeeruddin, M.K. Nazeeruddin, H. Aguilar Ribeiro, A. Mendes, M. Grätzel, Influence of sodium cations of N3 dye on the photovoltaic performance and stability of dye-sensitized solar cells. Chem. Phys. Chem. 10(7), 1117–1124 (2009)

    Article  Google Scholar 

  47. J.B. Yerima, D. William, A. Babangida, S.C. Ezike, Modeling, simulation and extraction of model parameters of dye-sensitized solar cells (DSSCs) using different single-diode models. Comput. Exp. Res. Mater. Renew. Energy 6(1), 33–42 (2023)

    Google Scholar 

Download references

Acknowledgements

Without the assistance of the Electronics and Communication Engineering Department at the National Institute of Technology Mizoram in India, the work would not have been able to be finished.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudra Sankar Dhar.

Ethics declarations

Conflicts of interest

The authors declare that they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warepam, D., Dhar, R.S., Singh, K.J. et al. Development and Analysis on Micro-Electrical Photovoltaic Model of Dye Sensitized Solar Cell for Optimized Performance. J. Inst. Eng. India Ser. D (2024). https://doi.org/10.1007/s40033-024-00689-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40033-024-00689-6

Keywords

Navigation