Skip to main content
Log in

3D Printed Thermoplastic Composite-Based Innovative Solutions for Heritage Structures: A Review on Technology to Application

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Heritage structures in different geographic locations need customized repair and maintenance solutions. The conventional repair and maintenance solutions are inadequate because the level of degradation (due to environmental factors like chemical weathering, biodeterioration, etc.) for a specific heritage structure is different. In the past decade, the use of 3D printing-based innovative solutions has been explored by some researchers for possible application in the repair of heritage structures. The current practice for the repair and maintenance of heritage structures involves the application of adhesive-based solutions with the drawback of limited lifespan. This is due to challenges in the bond formed between the base material and the repair solution. This paper reviews the technological development reported for the 3D printing of thermoplastic composites based on innovative repair solutions for heritage structures. The material processing techniques used in the fabrication of repair solutions are different due to variations in the construction material of heritage structures (e.g., masonry, wood, stone, etc.). The structures face damage due to wars/attacks, and seismic and climatic conditions, and hence, the repair solution needs to be developed accordingly. The replacement of adhesive-based solutions with customizable 3D-printed snug-fit repair solutions may be considered a better approach for the repair and maintenance of heritage structures. As compared to the commercial retrofitting solutions available for the conservation of heritage structures, the thermoplastic composite-based 3D printed solution with acceptable bonding and sustainability may be used successfully as a snug-fit repair solution for heritage structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Zhu, P. Zhang, J. Ding, Y. Dong, Y. Cao, W. Dong, X. Zhao, X. Li, M.M. Camaiti, Nano Ca (OH) 2: a review on synthesis, properties, and applications. J. Cult. Herit. 50, 25–42 (2021)

    Article  Google Scholar 

  2. V.E. García-Vera, A.J. Tenza-Abril, M. Lanzón, The effectiveness of ethyl silicate as consolidating and protective coating to extend the durability of earthen plasters. Constr. Build. Mater. 236, 117445 (2020)

    Article  Google Scholar 

  3. F. Xu, W. Zeng, D. Li, Recent advance in alkoxysilane-based consolidants for stone. Prog. Org. Coat. 127, 45–54 (2019)

    Article  Google Scholar 

  4. M.B. Dan, R. Přikryl, Á. Török (eds.) Materials, Technologies, and Practice in Historic Heritage Structures (Book, Springer, 2010), p. 376

  5. A. Viles, N.A. Heather, Cutler, global environmental change and the biology of heritage structures. Glob. Change Biol. 18(8), 2406–2418 (2012)

    Article  Google Scholar 

  6. S. Mitra, A. Grover, R. Singh, Handbook of conservation of heritage buildings (Directorate General, Central Public Works Department, Nirman Bhawan, 2013), p. 101

  7. Ministry of Housing and Urban Affairs, India, Model Building Bye-laws Chapter 8: Conservation of heritage sites including heritage buildings, heritage precincts, and natural feature areas. https://mohua.gov.in/upload/uploadfiles/files/Chap-8.pdf

  8. D. Roy, S.N. Kalidindi, A. Menon, Overview of project governance framework for built heritage conservation in India, in Professionalism in the Built Heritage Sector (CRC Press, 2019), pp. 43–50

  9. C.H. Lee, M.S. Lee, M. Suh, Weathering and deterioration of rock properties of the Dabotap Pagoda (world cultural heritage), Republic of Korea. Environ. Geol. 47, 547 (2005)

    Article  Google Scholar 

  10. R. Pathak, A. Saini, A. Wadhwa, H. Sharma, D. Sangwan, An object detection approach for detecting damages in heritage sites using 3-D point clouds and 2-D visual data. J. Cult. Herit. 48, 74–82 (2021)

    Article  Google Scholar 

  11. M.Y. Khan, F. Zaina, Z. Ul Abedin, S. Tariq, J. Khan, Evaluation of risks to UNESCO World Heritage (WH) sites in Taxila, Pakistan using ground-based and satellite remote sensing techniques. J. Cult. Herit. 5, 195–209 (2022)

    Article  Google Scholar 

  12. E. Lehmann, D. Mannes, Neutron and X-ray tomography in cultural heritage studies, in Spectroscopy, Diffraction, and Tomography in Art and Heritage Science (Elsevier, 2021), pp. 133–159

  13. M. Matias, F. Almeida, R. Moura, N. Barraca, High-resolution NDT in the characterization of the inner structure and materials of heritage buildings’ walls and columns. Constr. Build. Mater. 267, 121726 (2021)

    Article  Google Scholar 

  14. M.G. Masciotta, J.C.A. Roque, L.F. Ramos, P.B. Lourenço, A multidisciplinary approach to assess the health state of heritage structures: The case study of the Church of Monastery of Jerónimos in Lisbon. Constr. Build. Mater. 116, 169–187 (2016)

    Article  Google Scholar 

  15. Z. Turskis, Z. Morkunaite, V. Kutut, A hybrid multiple criteria evaluation method of ranking of cultural heritage structures for renovation projects. Int. J. Strateg. Prop. Manag. 21(3), 318–329 (2017)

    Article  Google Scholar 

  16. M. Marvasi, D. Cavalieri, G. Mastromei, A. Casaccia, B. Perito, Omics technologies for an in-depth investigation of biodeterioration of cultural heritage. Int. Biodeterior. Biodegr. 144, 104736 (2019)

    Article  Google Scholar 

  17. M.G. Guerra, R.A. Galantucci, Standard quantification and measurement of damages through features characterization of surface imperfections on 3D models: an application on architectural heritages. Procedia CIRP 88, 515–520 (2020)

    Article  Google Scholar 

  18. M.G. Masciotta, L.F. Ramos, P.B. Lourenço, The importance of structural monitoring as a diagnosis and control tool in the restoration process of heritage structures: a case study in Portugal. J. Cult. Herit. 27, 36–47 (2017)

    Article  Google Scholar 

  19. F. Chen, H. Guo, D. Tapete, F. Cigna, S. Piro, R. Lasaponara, N. Masini, The role of imaging radar in cultural heritage: from technologies to applications. Int. J. Appl. Earth Obs. Geoinf. 112, 102907 (2022)

    Google Scholar 

  20. J. Dyana, H. Haridasan, S. Rathnarajan, D. Rani, T. Raja, R.G. Pillai, A.K. Sengupta, A. Menon, Restoration of reinforced lime concrete sunshades of a century-old heritage building in New Delhi, India, in Structural Analysis of Historical Constructions (Springer, Cham, 2019) , pp. 778–787

  21. L. Di Angelo, P. Di Stefano, L. Fratocchi, A. Marzola, An AHP-based method for choosing the best 3D scanner for cultural heritage applications. J. Cult. Herit. 34, 109–115 (2018)

    Article  Google Scholar 

  22. Á.M. Felicísimo, M.E. Polo, Measurement and control of color fidelity in scanned 3D models for heritage conservation. J. Cult. Herit. 56, 159–166 (2022)

    Article  Google Scholar 

  23. V. Kumar, R. Singh, I.P.S. Ahuja, M.S.J. Hashmi, On technological solutions for repair and rehabilitation of heritage sites: a review. Adv. Mater. Process. Technol. 6(1), 146–166 (2020)

    Google Scholar 

  24. V. Kumar, R. Singh, I.P.S. Ahuja, Tertiary recycling of plastic solid waste for additive manufacturing, in Additive Manufacturing for Plastic Recycling (CRC Press, 2022), pp. 93–109

  25. V. Kumar, R. Singh, I.P.S. Ahuja, Hybrid feedstock filament processing for the preparation of composite structures in heritage repair, in Additive Manufacturing for Plastic Recycling (CRC Press, 2022), pp. 159–170

  26. V. Kumar, R. Singh, I.P.S. Ahuja, Graphene-reinforced acrylonitrile butadiene styrene composite as smart material for 4D applications, in 4D Printing (Elsevier, 2022), pp. 17–33

  27. V. Kumar, R. Singh, I.P.S. Ahuja, 3D printed graphene-reinforced polyvinylidene fluoride composite for piezoelectric properties, in 4D Printing (Elsevier, 2022), pp. 51–66

  28. T.V. Galambos, History of research and practice of the stability of steel structures in the twentieth century, in Stability and Ductility of Steel Structures (SDSS'97) (Pergamon, 1998), pp. 3–10

  29. M. Giaretton, D. Dizhur, F. da Porto, J.M. Ingham, Construction details and observed earthquake performance of unreinforced clay brick masonry cavity-walls. Structures, Elsevier 6, 159–169 (2016)

    Article  Google Scholar 

  30. O. Arslan, F. Messali, E. Smyrou, I.E. Bal, J.G. Rots, Experimental characterization of the axial behavior of traditional masonry wall metal tie connections in cavity walls. Constr. Build. Mater. 266, 121141 (2021)

    Article  Google Scholar 

  31. J.T. Kolawole, O.B. Olalusi, A.J. Orimogunje, Adhesive bond potential of compressed stabilized earth brick. Structures, Elsevier 23, 812–820 (2020)

    Article  Google Scholar 

  32. M.A.M. Khalil, E.H.M. Nasr, The development of legal framework for the management of World Heritage Sites in Oman: a case study on Bahla Oasis. J. Cult. Heritage Manage. Sustain. Dev. 13(1), 146–166 (2023). https://doi.org/10.1108/JCHMSD-07-2020-0106

  33. F. Cappitelli, C. Cattò, F. Villa, The control of cultural heritage microbial deterioration. Microorganisms 8(10), 1542 (2020)

    Article  Google Scholar 

  34. M. Dutta, Z. Husain, An application of multicriteria decision making to built heritage. The case of Calcutta. J. Cult. Herit. 10(2), 237–243 (2009)

    Article  Google Scholar 

  35. J.D. McAulay, A sequence for the American Heritage—elementary grades—. Peabody J. Educ. 42(4), 219–223 (1965)

    Article  Google Scholar 

  36. D. D’Ayala, G. Benzoni, Historic and traditional structures during the 2010 Chile earthquake: observations, codes, and conservation strategies. Earthq Spectra 28(1_Sppl1), 425–451 (2012)

    Article  Google Scholar 

  37. S. Jones, Experiencing authenticity at heritage sites: Some implications for heritage management and conservation. Conserv. Manag. Archaeol. Sites 11(2), 133–147 (2009)

    Article  Google Scholar 

  38. S. Chirikure, M. Manyanga, W. Ndoro, G. Pwiti, Unfulfilled promises? Heritage management and community participation at some of Africa’s cultural heritage sites. Int. J. Herit. Stud. 16(1–2), 30–44 (2010)

    Article  Google Scholar 

  39. A. Elfadaly, W. Attia, M.M. Qelichi, B. Murgante, R. Lasaponara, Management of cultural heritage sites using remote sensing indices and spatial analysis techniques. Surv. Geophys. 39(6), 1347–1377 (2018)

    Article  Google Scholar 

  40. A.C. Pinheiro, N. Mesquita, J. Trovão, F. Soares, I. Tiago, C. Coelho, H.P. de Carvalho, F. Gil, L. Catarino, G. Piñar, A. Portugal, Limestone biodeterioration: a review on the Portuguese cultural heritage scenario. J. Cult. Herit. 36, 275–285 (2019)

    Article  Google Scholar 

  41. T. Grøntoft, J. Cassar, An assessment of the contribution of air pollution to the weathering of limestone heritage in Malta. Environ. Earth Sci. 79(12), 1–16 (2020)

    Article  Google Scholar 

  42. L. Bianco, Geochemistry, mineralogy, and textural properties of the lower globigerina limestone used in the built heritage. Minerals 11(7), 740 (2021)

    Article  Google Scholar 

  43. K. Haneca, K. Čufar, H. Beeckman, Oaks, tree-rings and wooden cultural heritage: a review of the main characteristics and applications of oak dendrochronology in Europe. J. Archaeol. Sci. 36(1), 1–11 (2009)

    Article  Google Scholar 

  44. I. Irbe, M. Karadelev, I. Andersone, B. Andersons, Biodeterioration of external wooden structures of the Latvian cultural heritage. J. Cult. Herit. 13(3), 79–84 (2012)

    Article  Google Scholar 

  45. P.V. Alfieri, R.A.García, V. Rosato, M.V. Correa, Biodegradation and biodeterioration of wooden heritage: role of fungal succession. International Journal of Conservation Science,7(2016)

  46. J. Richards, H. Viles, Q. Guo, The importance of wind as a driver of earthen heritage deterioration in dryland environments. Geomorphology 369, 107363 (2020)

    Article  Google Scholar 

  47. J. Richards, R. Bailey, J. Mayaud, H. Viles, Q. Guo, X. Wang, Deterioration risk of dryland earthen heritage sites facing future climatic uncertainty. Sci. Rep. 10(1), 1–9 (2020)

    Article  Google Scholar 

  48. Q.Q. Pei, X.D. Wang, L.Y. Zhao, B. Zhang, Q.L. Guo, A sticky rice paste preparation method for reinforcing earthen heritage sites. J. Cult. Herit. 44, 98–109 (2020)

    Article  Google Scholar 

  49. S.M. Anas, M.I. Ansari, M. Alam, Performance of masonry heritage building under air-blast pressure without and with ground shock. Aust. J. Struct. Eng. 21(4), 329–344 (2020)

    Article  Google Scholar 

  50. M. Indirli, M.G. Castellano, Shape memory alloy devices for the structural improvement of masonry heritage structures. Int. J. Arch. Herit. 2(2), 93–119 (2008)

    Article  Google Scholar 

  51. A. Khan, R. Gupta, M. Garg, Determining material characteristics of “Rammed Earth” using Non-Destructive Test methods for structural design. Structures, Elsevier 20, 399–410 (2019)

    Article  Google Scholar 

  52. B. Chorlton, J. Gales, Fire performance of heritage and contemporary timber encapsulation materials. J. Build. Eng. 29, 101181 (2020)

    Article  Google Scholar 

  53. C.M. Belfiore, C. Calabro, S.A. Ruffolo, M. Ricca, A. Török, A. Pezzino, M.F. La Russa, The susceptibility to degradation of stone materials used in the built heritage of the Ortygia Island (Syracuse, Italy): a laboratory study. Int. J. Rock Mech. Min. Sci. 146, 104877 (2021)

    Article  Google Scholar 

  54. A. Adas, Wooden bay window (Rowshan) conservation in Saudi-Hejazi heritage buildings. Int. Arch. Photogr., Remote Sens. Spat. Inf. Sci. 5, W2 (2013)

    Google Scholar 

  55. B.A. Kayan, N.N. Ashraf, Evaluating the environmental maintenance impact (EMI): a carbon life cycle assessment (LCA) of the Singgora roof tiles repair in heritage buildings. Int. J. Build. Pathol Adaptat. (2021). https://doi.org/10.1108/IJBPA-07-2021-0101

  56. B.J. Nam, S.Y. Jang, Accelerated degradation test and failure analysis of rapid curing epoxy resin for restoration of cultural heritage. J. Conserv. Sci. 33(6), 467–483 (2017)

    Article  Google Scholar 

  57. S.R. Jeong, N.C. Cho, A study on aging characteristics of epoxy resins for conservation treatment of cultural heritage by adding UV stabilizer. Analyt. Sci. Technol. 24(5), 336–344 (2011)

    Article  Google Scholar 

  58. K. Santhanam, R. Ramadoss, Investigation on Alamparai Fort by utilization of organic materials for improvement of stability of heritage structure. Environ. Sci. Pollut. Res. 29, 86036–86054 (2022). https://doi.org/10.1007/s11356-021-16212-3

  59. C. Zhao, Y. Zhang, C.C. Wang, M. Hou, A. Li, Recent progress in instrumental techniques for architectural heritage materials. Herit. Sci. 7(1), 1–50 (2019)

    Article  Google Scholar 

  60. M. Ganobjak, S. Brunner, J. Wernery, Aerogel materials for heritage buildings: materials, properties, and case studies. J. Cult. Herit. 42, 81–98 (2020)

    Article  Google Scholar 

  61. E. Sassoni, Hydroxyapatite and other calcium phosphates for the conservation of cultural heritage: a review. Materials 11(4), 557 (2018)

    Article  Google Scholar 

  62. B. Katušin-Ražem, D. Ražem, M. Braun, Irradiation treatment for the protection and conservation of cultural heritage artifacts in Croatia. Radiat. Phys. Chem. 78(7–8), 729–731 (2009)

    Article  Google Scholar 

  63. D. Giaccone, U. Santamaria, M. Corradi, An experimental study on the effect of water on historic brickwork masonry. Heritage 3(1), 29–46 (2020)

    Article  Google Scholar 

  64. P. López-Arce, E. Doehne, J. Greenshields, D. Benavente, D. Young, Treatment of rising damp and salt decay: the historic masonry buildings of Adelaide, South Australia. Mater. Struct. 42(6), 827–848 (2009)

    Article  Google Scholar 

  65. Y. Luo, M. Yang, P. Ni, X. Peng, X. Yuan, Degradation of rammed earth under wind-driven rain: the case of Fujian Tulou, China. Constr Build Mater 261, 119989 (2020)

    Article  Google Scholar 

  66. V. Daniele, G. Taglieri, R. Quaresima, The nano limes in cultural heritage conservation: characterization and analysis of the carbonatation process. J. Cult. Herit. 9(3), 294–301 (2008)

    Article  Google Scholar 

  67. B. Bisceglia, R. De Leo, A.P. Pastore, S. Von Gratowski, V. Meriakri, Innovative systems for cultural heritage conservation. Millimeter wave application for non-invasive monitoring and treatment of works of art. J. Microwave Power Electromagnet. Energy 45(1), 36–48 (2011)

    Article  Google Scholar 

  68. E. Ortega-Villamagua, M. Gudiño-Gomezjurado, A. Palma-Cando, Microbiologically induced carbonate precipitation in the restoration and conservation of cultural heritage materials. Molecules 25(23), 5499 (2020)

    Article  Google Scholar 

  69. A.M. Barberena-Fernández, M.T. Blanco-Varela, P.M. Carmona-Quiroga, Use of nano-silica-or nano line-additioned TEOS to consolidate cementitious materials in heritage structures: physical and mechanical properties of mortars. Cem. Concr. Compos. 95, 271–276 (2019)

    Article  Google Scholar 

  70. O. Munck, J. Fode, The treatment of fungal growth in heritage structures in Denmark. ASTM Spec. Tech. Publ. 1351, 161–175 (2000)

    Google Scholar 

  71. D.K. Chanda, P. Khan, N. Dey, M. Majumder, A.K. Chakraborty, B.B. Jha, J. Ghosh, Synthesis of calcium-based nano powders for application in the conservation and restoration of heritage mortar. SN Appl. Sci. 2(3), 1–11 (2020)

    Article  Google Scholar 

  72. F. Yavartanoo, T.H.K. Kang, Retrofitting of unreinforced masonry structures and considerations for heritage-sensitive constructions. J. Build. Eng. 49, 103993 (2022)

    Article  Google Scholar 

  73. Z. Xu, T.H. Wu, Y. Shen, L. Wu, Three-dimensional reconstruction of large cultural heritage objects based on UAV video and its data. Int. Arch. Photogr., Remote Sens. Spat. Inf. Sci. 41, 985 (2016)

    Article  Google Scholar 

  74. V. Kumar, R. Singh, I.P.S. Ahuja, Secondary recycled acrylonitrile–butadiene–styrene and graphene composite for 3D/4D applications: rheological, thermal, magnetometric, and mechanical analyses. J. Thermoplast. Compos. Mater. 35(6), 761–781 (2022)

    Article  Google Scholar 

  75. V. Kumar, R. Singh, I.P.S. Ahuja, J.P. Davim, On nanographene-reinforced polyvinylidene fluoride composite matrix for 4D applications. J. Mater. Eng. Perform. 30(7), 4860–4871 (2021)

    Article  Google Scholar 

  76. F. Graziotti, U. Tomassetti, A. Penna, G. Magenes, Out-of-plane shaking table tests on URM single leaf and cavity walls. Eng. Struct. 125, 455–470 (2016)

    Article  Google Scholar 

  77. D. Dizhur, K. Walsh, I. Giongo, H. Derakhshan, J. Ingham, Out-of-plane proof testing of masonry infill walls. Structures, Elsevier 15, 244–258 (2018)

    Article  Google Scholar 

  78. K.M. Haneefa, S.D. Rani, R. Ramasamy, M. Santhanam, Microstructure and geochemistry of lime plaster mortar from a heritage structure. Constr. Build. Mater. 225, 538–554 (2019)

    Article  Google Scholar 

  79. A. Moropoulou, K.C. Labropoulos, E.T. Delegou, M. Karoglou, A. Bakolas, Non-destructive techniques as a tool for the protection of built cultural heritage. Constr. Build. Mater. 48, 1222–1239 (2013)

    Article  Google Scholar 

  80. D. Ghosh, H. Gupta, A.K. Mittal, R. Shekhar, Inspection of heritage structure using infrared thermography, in Conference and exhibition of the Indian Society for NDT (December), Chennai, Tamil Nadu, India (2017)

  81. S. Morena, F. Bordese, E. Caliano, S. Freda, E. De Feo, S. Barba, Architectural survey techniques for degradation diagnostics. An application for the cultural heritage. Int. Arch. Photogr., Remote Sens. Spat. Inf. Sci. 46, 449–454 (2021)

    Article  Google Scholar 

  82. J.N. Hatzopoulos, D. Stefanakis, A. Georgopoulos, S. Tapinaki, V. Pantelis, I. Liritzis, Use of various surveying technologies to 3d digital mapping and modeling of cultural heritage structures for maintenance and restoration purposes: the tholos in Delphi, Greece. Mediter. Archaeol. Archaeom. 17(3), 311–336 (2017)

  83. K. Themistocleous, A. Agapiou, D. Hadjimitsis, 3D documentation, and BIM modeling of cultural heritage structures using UAVs: the case of the Foinikaria church. Int. Arch. Photogram., Remote Sens. Spat. Inf. Sci. 42, 45 (2016)

    Article  Google Scholar 

  84. M. Marzouk, Using 3D laser scanning to analyze heritage structures: the case study of an Egyptian palace. J. Civ. Eng. Manag. 26(1), 53–65 (2020)

    Article  Google Scholar 

  85. S. Herban, D. Costantino, V.S. Alfio, M. Pepe, Use of low-cost spherical cameras for the digitisation of cultural heritage structures into 3D point clouds. J. Imaging 8(1), 13 (2022)

    Article  Google Scholar 

  86. V.S. Alfio, D. Costantino, M. Pepe, A. Restuccia Garofalo, A geomatics approach in scan to FEM process applied to cultural heritage structure: the case study of the “Colossus of Barletta.” Remote Sens 14(3), 664 (2022)

    Article  Google Scholar 

  87. I. Selvaggi, M. Dellapasqua, F. Franci, A. Spangher, D. Visintini, G. Bitelli, 3D comparison towards a comprehensive analysis of a building in cultural heritage. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLII-2, 1061–1066 (2018). https://doi.org/10.5194/isprs-archives-XLII-2-1061-2018

  88. M. Gomez-Heras, L. López-González, S. García-Morales, R. Fort, M. Álvarez de Buergo, M.A. Rogerio-Candelera, Integrating non-destructive techniques with photogrammetry 3D models for the development of geographic information systems in heritage structures, in Science, Technology, and Cultural Heritage (Taylor & Francis Group, London 2014), pp. , 429–434

  89. M. Zacharek, P. Delis, M. Kedzierski, A. Fryskowska, Generating accurate 3D models of architectural heritage structures using low-cost cameras and open-source algorithms. Int. Arch. Photogram., Remote Sens. Spat. Inf. Sci. 42, 99 (2017)

    Article  Google Scholar 

  90. M.C.P. Mahinda, H.P.A.J. Udhyani, P.M.K. Alahakoon, W.G.C.W. Kumara, M.N.A. Hinas, J.A. Thamboo, Development of an effective 3D mapping technique for heritage structures, in 2021 3rd International Conference on Electrical Engineering (EECon) (IEEE 2021), pp. 92–99

  91. M.P. Morigi, F. Casali, M. Bertuzzi, R. Brancaccio, V. d’Errico, Application of X-ray computed tomography to cultural heritage diagnostics. Appl. Phys. A 100(3), 653–661 (2010)

    Article  Google Scholar 

  92. V. Pérez-Gracia, J.O. Caselles, J. Clapés, G. Martinez, R. Osorio, Non-destructive analysis in cultural heritage buildings: evaluating the Mallorca cathedral supporting structures. NDT E Int. 59, 40–47 (2013)

    Article  Google Scholar 

  93. P. Targowski, M. Iwanicka, Optical coherence tomography: its role in the non-invasive structural examination and conservation of cultural heritage objects—a review. Appl. Phys. A 106(2), 265–277 (2012)

    Article  Google Scholar 

  94. R. Fort, M.A. de Buergo, E.M. Perez-Monserrat, Non-destructive testing for the assessment of granite decay in heritage structures compared to quarry stone. Int. J. Rock Mech. Min. Sci. 61, 296–305 (2013)

    Article  Google Scholar 

  95. S. Aparicio Secanellas, J.C. Liébana Gallego, G. Anaya Catalán, R. Martín Navarro, J. Ortega Heras, M.Á. GarcíaIzquierdo, M. González Hernández, J.J. Anaya Velayos, An ultrasonic tomography system for the inspection of columns in architectural heritage. Sensors 22(17), 6646 (2022)

    Article  Google Scholar 

  96. F. Albertin, M. Bettuzzi, R. Brancaccio, M.P. Morigi, F. Casali, X-ray computed tomography in situ: an opportunity for museums and restoration laboratories. Heritage 2(3), 2028–2038 (2019)

    Article  Google Scholar 

  97. E. Diz-Mellado, E.J. Mascort-Albea, R. Romero-Hernández, C. Galán-Marín, C. Rivera-Gómez, J. Ruiz-Jaramillo, A. Jaramillo-Morilla, Non-destructive testing, and finite element method integrated procedure for heritage diagnosis: the Seville Cathedral case study. Journal of Building Engineering 37, 102134 (2021)

    Article  Google Scholar 

  98. S. Santos-Assunçao, V. Perez-Gracia, O. Caselles, J. Clapes, V. Salinas, Assessment of complex masonry structures with GPR compared to other non-destructive testing studies. Remote Sens. 6(9), 8220–8237 (2014)

    Article  Google Scholar 

  99. M. Puliti, G. Montaggioli, A. Sabato, Automated subsurface defects’ detection using point cloud reconstruction from infrared images. Autom. Constr. 129, 103829 (2021)

    Article  Google Scholar 

  100. G. Lucet, Virtual reality: a knowledge tool for cultural heritage, in International Conference on Computer Vision and Computer Graphics (Springer, Berlin, Heidelberg, 2008), pp. 1–10

  101. M. Al-Zu’bi, M. Fan, L. Anguilano, Advances in bonding agents for retrofitting concrete structures with fiber reinforced polymer materials: a review. Constr. Build. Mater. 330, 127115 (2022)

    Article  Google Scholar 

  102. W. Zhou, W. McGee, H. Zhu, H.S. Gökçe, V.C. Li, Time-dependent fresh properties characterization of 3D printing engineered cementitious composites (3DP-ECC): on the evaluation of buildability. Cem. Concr. Compos. 133, 104704 (2022)

    Article  Google Scholar 

  103. W. Li, Q. Wei, Q. Chen, Z. Jiang, Effect of CO32-and Ca2+ on self-healing of cementitious materials due to “build-in” carbonation. J. Build. Eng. 56, 104781 (2022)

  104. M. Torres-González, A.J. Prieto, F.J. Alejandre, F.J. Blasco-López, Digital management focused on the preventive maintenance of World Heritage Sites. Autom. Constr. 129, 103813 (2021)

    Article  Google Scholar 

  105. S.B.H.S. Mohamad, Z.A. Akasah, M.A.A. Rahman, A review of the maintenance performance factors for heritage buildings. InCIEC 2014, 177–187 (2015)

    Google Scholar 

  106. M. Marzouk, M. ElSharkawy, P. Elsayed, A. Eissa, Resolving deterioration of heritage building elements using an expert system. Int. J. Build. Pathol. Adapt. 38(5), 721–735 (2020)

  107. E. Carretti, L. Dei, P. Baglioni, Solubilization of acrylic and vinyl polymers in nanocontainer solutions. Application of microemulsions and micelles to cultural heritage conservation. Langmuir 19(19), 7867–7872 (2003)

    Article  Google Scholar 

  108. S. Singh, S. Dhyani, P. Kokate, S. Chakraborty, S. Nimsadkar, Deterioration of world heritage cave monument of Ajanta, India: insights to important biological agents and environment-friendly solutions. Heritage 2(3), 2545–2554 (2019)

    Article  Google Scholar 

  109. M. Baglioni, G. Poggi, D. Chelazzi, P. Baglioni, Advanced materials in cultural heritage conservation. Molecules 26(13), 3967 (2021)

    Article  Google Scholar 

  110. F. Giacobello, I. Ielo, H. Belhamdi, M.R. Plutino, Geopolymers and functionalization strategies for the development of sustainable materials in construction industry and cultural heritage applications: a review. Materials 15(5), 1725 (2022)

    Article  Google Scholar 

  111. D. Chelazzi, G. Poggi, Y. Jaidar, N. Toccafondi, R. Giorgi, P. Baglioni, Hydroxide nanoparticles for cultural heritage: consolidation and protection of wall paintings and carbonate materials. J. Colloid Interface Sci. 392, 42–49 (2013)

    Article  Google Scholar 

  112. A. Vega-Bosch, V. Santamarina-Campos, A. Colomina-Subiela, M.Á. Carabal-Montagud, Cryogenics as an advanced method of cleaning cultural heritage: challenges and solutions. Sustainability 14(3), 1052 (2022)

    Article  Google Scholar 

  113. C. Cristofari, R. Norvaišienė, J.L. Canaletti, G. Notton, Innovative alternative solar thermal solutions for housing in conservation-area sites listed as national heritage assets. Energy Build 89, 123–131 (2015)

    Article  Google Scholar 

  114. F. Remondino, Advanced 3D recording techniques for the digital documentation and conservation of heritage sites and objects. Change Over Time 1(2), 198–214 (2011)

    Article  Google Scholar 

  115. M. Uranjek, R. Zarnic, V. Bosiljkov, Strengthening of heritage buildings by means of grout injection problems and solutions, in 2nd Conference on Historic Mortars-HMC 2010 and RILEM TC 203-RHM Final Workshop (RILEM Publications SARL, 2010), pp. 769–777

  116. L. Li, M. Shao, S. Wang, Z. Li, Preservation of earthen heritage sites on the Silk Road, northwest China from the impact of the environment. Environ. Earth Sci. 64(6), 1625–1639 (2011)

    Article  Google Scholar 

  117. T. Addabbo, A. Fort, M. Mugnaini, E. Panzardi, A. Pozzebon, V. Vignoli, A city-scale IoT architecture for monumental structures monitoring. Measurement 131, 349–357 (2019)

    Article  Google Scholar 

  118. N. Cavalagli, A. Kita, S. Falco, F. Trillo, M. Costantini, F. Ubertini, Satellite radar interferometry and in-situ measurements for static monitoring of historical monuments: the case of Gubbio, Italy. Remote Sens. Environ. 235, 111453 (2019)

    Article  Google Scholar 

  119. R.A. Silva, P. Jaquin, D.V. Oliveira, T.F. Miranda, L. Schueremans, N. Cristelo, Conservation and new construction solutions in rammed earth, in Structural Rehabilitation of Old Buildings (Springer, Berlin, Heidelberg, 2014), pp. 77–108

  120. R. Scopigno, P. Cignoni, N. Pietroni, M. Callieri, M. Dellepiane, Digital Fabrication Technologies for Cultural Heritage (STAR) (GCH, 2014), pp.75–85

  121. K. Themistocleous, A. Agapiou, D.G. Hadjimitsis, Experiencing cultural heritage sites using 3D modeling for the visually impaired, in Euro-Mediterranean Conference 2016 (Springer, Cham 2016), pp. 171–177

  122. V. Kumar, R. Singh, I.P.S. Ahuja, Secondary recycled polyvinylidene–limestone composite in 4D printing applications for heritage structures: Rheological, thermal, mechanical, spectroscopic, and morphological analysis. Proceed. Inst. Mech. Eng. Part E: J. Process Mech. Eng. 237(2), 300–311 (2023)

  123. V. Kumar, R. Singh, I.P.S. Ahuja, On 3D printing of electro-active PVDF-Graphene and Mn-doped ZnO nanoparticle-based composite as a self-healing repair solution for heritage structures. Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf. 236(8), 1141–1154 (2022)

    Article  Google Scholar 

  124. V. Kumar, R. Singh, I.P.S. Ahuja, On rheological, thermal, mechanical, morphological, and piezoelectric properties and one-way programming features of polyvinylidene fluoride–CaCO3 composites. J. Mater. Eng. Perform. 31(6), 4998–5012 (2022)

  125. V. Kumar, R. Singh, I.P.S. Ahuja, On 3D printed meta-structure-based functional prototype as an innovative solution for repair and online health monitoring of heritage structures. Mater. Lett. 326, 132950 (2022)

    Article  Google Scholar 

  126. A. Kioussi, M. Karoglou, K. Labropoulos, A. Bakolas, A. Moropoulou, Integrated documentation protocols enabling decision-making in cultural heritage protection. J. Cult. Herit. 14(3), 141–146 (2013)

    Article  Google Scholar 

  127. S.R. Subramaniam, A review on repair and rehabilitation of heritage buildings. Int. Res. J. Eng. Technol. 3(4), 1330–1336 (2016)

    Google Scholar 

  128. P. Croce, New frontiers of composites applications in heritage buildings: repair of exposed masonry of St. Nicola Church in Pisa. J. Compos. Sci. 5(8), 218 (2021)

    Article  Google Scholar 

  129. B.A. Kayan, Green maintenance for heritage buildings: paint repair appraisal. Int. J. Build. Pathol. Adapt. 35(1), 63–89 (2017)

  130. S.G. Barsanti, F. Remondino, B.J. Fenández-Palacios, D. Visintini, Critical factors and guidelines for 3D surveying and modeling in Cultural Heritage. Int. J. Herit. Digit. Era 3(1), 141–158 (2014)

    Article  Google Scholar 

  131. I. Aicardi, F. Chiabrando, A.M. Lingua, F. Noardo, Recent trends in cultural heritage 3D survey: the photogrammetric computer vision approach. J. Cult. Herit. 32, 257–266 (2018)

    Article  Google Scholar 

  132. M. Potenziani, M. Callieri, M. Dellepiane, M. Corsini, F. Ponchio, R. Scopigno, 3DHOP: 3D heritage online presenter. Comput. Graph. 52, 129–141 (2015)

    Article  Google Scholar 

  133. H.K. Dhonju, W. Xiao, J.P. Mills, V. Sarhosis, Share Our Cultural Heritage (SOCH): worldwide 3D heritage reconstruction and visualization via web and mobile GIS. ISPRS Int. J. Geo Inf. 7(9), 360 (2018)

    Article  Google Scholar 

  134. R. Kumar, R. Singh, V. Kumar, P. Kumar, N. Ranjan, On Dy+ 3 nobbled ZnO-reinforced PVDF for flexible optical sensor. J. Inst. Eng. (India) Ser. C 104(2), 291–306 (2023)

    Article  Google Scholar 

  135. M. Pollefeys, L. Van Gool, M. Vergauwen, K. Cornelis, F. Verbiest, J. Tops, Image-based 3D acquisition of archaeological heritage and applications, in Proceedings of the 2001 Conference on Virtual Reality, Archeology, and Cultural Heritage (2001), pp. 255–262

  136. R. Scopigno, P. Cignoni, N. Pietroni, M. Callieri, M. Dellepiane, Digital fabrication techniques for cultural heritage: a survey. Comput. Graph. Forum 36(1), 6–21 (2017)

    Article  Google Scholar 

  137. R. Singh, A. Barwar, A. Kumar, Investigations on primary and secondary recycling of PLA and its composite for biomedical and sensing applications. J. Inst. Eng. (India) Ser. C 103(4), 821–836 (2022)

    Article  Google Scholar 

  138. K. Themistocleous, M. Ioannides, A. Agapiou, D.G. Hadjimitsis, The methodology of documenting cultural heritage sites using photogrammetry, UAV, and 3D printing techniques: the case study of Asinou Church in Cyprus, in 3rd International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2015), vol. 9535 (SPIE, 2015), pp. 312–318

  139. V. Kumar, R. Singh, I.P.S. Ahuja, On programming of polyvinylidene fluoride–limestone composite for four-dimensional printing applications in heritage structures. Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl. 236(2), 319–333 (2022)

    Google Scholar 

  140. V. Kumar, R. Singh, I.P.S. Ahuja, Multi-material printing of PVDF composites: a customized solution for maintenance of heritage structures. Proceed. Inst. Mech. Eng. Part L: J. Mater.: Design Appl. 237(3), 554–564 (2023)

  141. C. Gentile, A. Ruccolo, F. Canali, Monitoring an iconic heritage structure with OMA: the Main Spire of the Milan Cathedral. Smart Struct Syst, Int J. 27(2), 305–318 (2021)

    Google Scholar 

  142. M. Mishra, Machine learning techniques for structural health monitoring of heritage buildings: a state-of-the-art review and case studies. J. Cult. Herit. 47, 227–245 (2021)

    Article  Google Scholar 

  143. T. Hanazato, C. Minowa, Y. Niitsu, K. Nitto, N. Kawai, H. Maekawa, M. Morii, Seismic and wind performance of the five-storied Pagoda of the timber heritage structure, in Advanced Materials Research, vol. 133 (Trans Tech Publications Ltd., 2010), pp. 79–95

  144. A. Saisi, C. Gentile, A. Ruccolo, Continuous monitoring of a challenging heritage tower in Monza, Italy. J. Civ. Struct. Heal. Monit. 8(1), 77–90 (2018)

    Article  Google Scholar 

  145. D. Germanese, M.A. Pascali, A.Berton, G.R. Leone, D. Moroni, B. Jalil, M. Tampucci, A. Benassi, Architectural heritage: 3D documentation and structural monitoring using UAV, in VIPERC@ IRCDL 2019 (2019), pp. 1–12

  146. K. Badogu, R. Kumar, R. Kumar, 3D Printing of glass fiber-reinforced polymeric composites: a review. J. Inst. Eng. (India): Ser. C 103(5), 1285–1301 (2022)

    Google Scholar 

  147. D. Germanese, G.R. Leone, D. Moroni, M.A. Pascali, M. Tampucci, Towards structural monitoring and 3d documentation of architectural heritage using UAV, in International Conference on Multimedia and Network Information System (Springer, Cham, 2018), pp. 332–342

  148. F.J. Baeza, S. Ivorra, D. Bru, F.B. Varona, Structural health monitoring systems for smart heritage and infrastructures in Spain, in Mechatronics for Cultural Heritage and Civil Engineering (Springer, Cham, 2018), pp. 271–294

  149. N. Yang, Y.T. Jia, F. Bai, S.J. Qin, Reliability estimation of a Tibetan heritage timber structure with inclination in its Que-Ti joints. Structures, Elsevier 43, 257–270 (2022)

    Article  Google Scholar 

  150. V. Kumar, R. Singh, I.P.S. Ahuja, 3D printed innovative customized solution for regulating weathering effect on heritage structures. Mater. Lett. 324, 132717 (2022)

    Article  Google Scholar 

  151. V. Kumar, R. Singh, I.P.S. Ahuja, Online health monitoring of repaired non-structural cracks with innovative 3D printed strips in heritage buildings. Mater. Lett. 327, 133033 (2022)

    Article  Google Scholar 

  152. V. Kumar, R. Singh, I.P.S. Ahuja, On mechanical and thermal properties of cryo-milled primary recycled ABS. Sādhanā 45(1), 1–13 (2020)

    Article  Google Scholar 

  153. R. Singh, R. Kumar, N. Ranjan, Sustainability of recycled ABS and PA6 by banana fiber reinforcement: thermal, mechanical and morphological properties. J. Inst. Eng. (India): Ser. C 100, 351–360 (2019)

    Google Scholar 

  154. V. Kumar, R. Singh, I.P.S. Ahuja, On correlation of rheological, thermal, mechanical and morphological properties of chemical assisted mechanically blended ABS-Graphene composite as tertiary recycling for 3D printing applications. Adv. Mater. Process. Technol. 8(3), 2476–2495 (2022)

  155. V. Kumar, R. Singh, I.P.S. Ahuja, On 4D capabilities of chemical assisted mechanical blended ABS-nano graphene composite matrix. Mater. Today: Proc. 48, 952–957 (2022)

    Article  Google Scholar 

  156. R. Kumar, R. Singh, V. Kumar, P. Kumar, On Mn-doped ZnO nanoparticles reinforced in PVDF matrix for fused filament fabrication: mechanical, thermal, morphological, and 4D properties. J. Manuf. Process. 62, 817–832 (2021)

    Article  Google Scholar 

  157. V. Kumar, R. Singh, I.P.S. Ahuja, On cryogenic milling of primary recycled ABS: rheological, morphological, and surface properties. J. Thermoplast. Compos. Mater. 35(9), 1303–1318 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the National Institute of Technical Teachers Training and Research (NITTTR) Chandigarh, Punjab Engineering College (PEC) Chandigarh, Thapar Institute of Engineering and Technology, Patiala, and Guru Nanak Dev Engineering College, Ludhiana, for providing the laboratory facilities.

Funding

The authors received financial support from the Department of Science and Technology (DST), Government of India, under the Science and Heritage Research Initiative (SHRI) research project (File number: DST/TDT/SHRI-35/2018) for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupinder Singh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Singh, R. & Ahuja, I.S. 3D Printed Thermoplastic Composite-Based Innovative Solutions for Heritage Structures: A Review on Technology to Application. J. Inst. Eng. India Ser. C 104, 1091–1112 (2023). https://doi.org/10.1007/s40032-023-00981-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-023-00981-6

Keywords

Navigation