Skip to main content
Log in

A 38–40 dB Power Gain and 2.4 dB NF Three-Stage Cascaded/Cascoded LNA for Long Range Automotive Radar Application

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

This paper demonstrates novel technique to devise a three-stage millimeter-wave low noise amplifier (LNA) operated at 76–77 GHz frequency band used in long range automotive Radar application. LNA having high power gain along with low noise figure is necessary for long range automotive Radar application. High power gain is one of the biggest challenges in the LNA design of the long range automotive application (nearly 40 dB power loss of received echo signal). Here, we propose a novel method to design an LNA using three configurations, i.e., cascaded, cascoded and differential. Design methodology used for this proposed LNA are also discussed in this paper. Power, small-signal, noise and stability analysis of post-layout and RC-extracted novel LNA are carried for the same. The proposed LNA is implemented in 45 nm complementary metal oxide semiconductor process, and its results show 2.4 dB noise factor 38–40 dB maximum power gain. It also provides outstanding stability and minimum size which is best suitable for Automotive integrated Radar sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Akbar, M. Atarodi, S. Saeedi, Design method for a reconfigurable CMOS LNA with input tuning and active balun. AEU Int. J. Electron. Commun. 69(1), 424–431 (2015). https://doi.org/10.1016/j.aeue.2014.10.019

    Article  Google Scholar 

  2. S. Arshad, R. Ramzan, K. Muhammad, Q. ul Wahab, A sub-10 mW, noise cancelling, wideband LNA for UWB applications. AEU Int. J. Electron. Commun. 69(1), 109–118 (2015). https://doi.org/10.1016/j.aeue.2014.08.002

    Article  Google Scholar 

  3. R. Carmon, R. Ben-Yishay, O. Katz, B. Sheinman, D. Elad, A 71-76GHz low noise amplifier with integrated image reject filter and single balanced down converter mixer, in 2011 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2011) (IEEE, 2011). https://doi.org/10.1109/comcas.2011.6105873

  4. T.C. Carrillo, J.G. Macias-Montero, A.O. Martí, J.S. Córdoba, J.M. Lopez-Villegas, Cmos single-ended-to-differential low-noise amplifier. Integr. VLSI J. 42(3), 304–311 (2009)

    Article  Google Scholar 

  5. M. Fahimnia, M. Nezhad-Ahamadi, B. Biglarbeigian, S. Safavi-Naieni, M. Mohammad-Taheri, Y. Wang, A 77 GHz low noise amplifier using low-cost 0.13 \(\mu \)m CMOS technology, in Microsystems and Nanoelectronics Research Conference, 2009. MNRC 2009. 2nd (IEEE, 2009), pp. 73–75

  6. L. Gao, Q. Ma, G.M. Rebeiz, A 4.7 mW W-band LNA with 4.2 db NF and 12 db gain using drain to gate feedback in 45nm cmos rfsoi technology, in 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC) (IEEE, 2018), pp. 280–283

  7. N. Gautam, M. Kumar, A. Chaturvedi, A 3.1–10.6 GHz CMOS two stage cascade topology low-noise amplifier for UWB system, in 2014 Fourth International Conference on Communication Systems and Network Technologies (IEEE, 2014). https://doi.org/10.1109/csnt.2014.218

  8. G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, vol. 2 (Prentice Hall, Upper Saddle River, 1997)

    Google Scholar 

  9. R. Guan, J. Jin, W. Pan, D. Chen, J. Zhou, Wideband dual-mode complementary metal-oxide-semiconductor receiver. IET Circuits Dev. Syst. 10(6), 87–93 (2016)

    Article  Google Scholar 

  10. M. Hayati, S. Cheraghaliei, S. Zarghami, Design of UWB low noise amplifier using noise-canceling and current-reused techniques. Integr. VLSI J. 60, 232–239 (2018)

    Article  Google Scholar 

  11. D. Huang, S. Diao, W. Qian, F. Lin, A resistive-feedback LNA in 65 nm CMOS with a gate inductor for bandwidth extension. Microelectron. J. 46(1), 103–110 (2015). https://doi.org/10.1016/j.mejo.2014.10.012

    Article  Google Scholar 

  12. R. Jafarnejad, A. Jannesari, J. Sobhi, A linear ultra wide band low noise amplifier using pre-distortion technique. AEU Int. J. Electron. Commun. 79(Supplement C), 172–183 (2017). https://doi.org/10.1016/j.aeue.2017.05.046

    Article  Google Scholar 

  13. C.H. Lee, W.Y. Choi, J.H. Kim, Y.W. Kwon, A 77 GHz 3-stage low noise amplifier with cascode structure utilizing positive feedback network using 0.13 \(\mu \)m CMOS process. JSTS J. Semicond. Technol. Sci. 8(4), 289–294 (2008). https://doi.org/10.5573/jsts.2008.8.4.289

    Article  Google Scholar 

  14. Y.S. Lin, C.Y. Lee, 9.99 mW 4.8 dB NF 57–81 GHz CMOS low-noise amplifier for 60 GHz WPAN system and 77 GHz automobile radar system. Microw. Opt. Technol. Lett. 57(3), 594–600 (2015). https://doi.org/10.1002/mop.28898

    Article  Google Scholar 

  15. Y.S. Li, G.L. Lee, C.C. Wang, C.C. Chen, A 21.1 mW 6.2 dB NF 77-81 GHz CMOS low-noise amplifier with 13.5\(\pm \)0.5 dB S21 and excellent input and output matching for automotive radars(2014), pp. 73–75. https://doi.org/10.1109/RWS.2014.6830087

  16. Y.S. Lin, C.C. Chen, C.Y. Lee, 7.2 mW CMOSlow-noise amplifier with 17.3 dB gain and 7.7 dB NF for 76–77 GHz long-range and 77–81 GHz short-range automotive radars. Analog Integr. Circuits Signal Process. 87(1), 1–9 (2016). https://doi.org/10.1007/s10470-016-0711-7

    Article  Google Scholar 

  17. M.A.G. Lorenzo, M.T.G.. de Leon, Comparison of LNA topologies for WiMAX applications in a standard 90-nm CMOS process, in 2010 12th International Conference on Computer Modelling and Simulation (UKSim), (IEEE, 2010), pp. 642–647

  18. D.M.D.M. Pozar, Microwave and RF Wireless Systems (Wiley, New York, 2001)

    Google Scholar 

  19. A.K. Ray, R.C. Shit, Design of ultra-low noise, wideband low-noise amplifier for highly survival radar receiver. IET Circuits Dev. Syst. 10(7), 473–480 (2016)

    Article  Google Scholar 

  20. B. Razavi, R. Behzad, RF Microelectronics, vol. 1 (Prentice Hall, Upper Saddle River, 1998)

    Google Scholar 

  21. A. Saberkari, S. Kazemi, V. Shirmohammadli, M. Yagoub, GM-boosted flat gain UWB low noise amplifier with active inductor-based input matching network. Integr. VLSI J. 52, 323–333 (2016)

    Article  Google Scholar 

  22. X. Sun, B. Chi, C. Zhang, Z. Wang, Z. Wang, Ultra-high-frequency radio frequency identification reader receiver with 10dBm input P1dB and -74dBm sensitivity in 0.18\(\mu \)m CMOS. IET Circuits Dev. Syst. 5(10), 392–402 (2011)

    Article  Google Scholar 

  23. R. Yadav, P.K. Dahiya, R. Mishra, A high performance 76.5 GHz FMCW RADAR for advanced driving assistance system, in 2016 3rd International Conference on Signal Processing and Integrated Networks (SPIN) (IEEE, 2016), pp. 383–388

  24. Y. Yu, K. Kang, Analysis and design of transformer-based CMOS ultra-wideband millimeter-wave circuits for wireless applications: a review. Front. Inf. Technol. Electron. Eng. 21(1), 97–115 (2020)

    Article  Google Scholar 

  25. J.H.C. Yun-Chih Lu, T.-N. Luo, Y.J.E. Chen, A 77-GHz LNA for automotive radar application, in IEEE International Wireless Symposium (IWS) (IEEE, 2013). https://doi.org/10.1109/ieee-iws.2013.6616727

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rekha Yadav.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, R., Dahiya, P.K., Mishra, R. et al. A 38–40 dB Power Gain and 2.4 dB NF Three-Stage Cascaded/Cascoded LNA for Long Range Automotive Radar Application. J. Inst. Eng. India Ser. B 102, 1–9 (2021). https://doi.org/10.1007/s40031-020-00511-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-020-00511-3

Keywords

Navigation