Skip to main content

Advertisement

Log in

Artificial Bee Colony Optimization for Short-Term Hydrothermal Scheduling

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

Artificial bee colony optimization is applied to determine the optimal hourly schedule of power generation in a hydrothermal system. Artificial bee colony optimization is a swarm-based algorithm inspired by the food foraging behavior of honey bees. The algorithm is tested on a multi-reservoir cascaded hydroelectric system having prohibited operating zones and thermal units with valve point loading. The ramp-rate limits of thermal generators are taken into consideration. The transmission losses are also accounted for through the use of loss coefficients. The algorithm is tested on two hydrothermal multi-reservoir cascaded hydroelectric test systems. The results of the proposed approach are compared with those of differential evolution, evolutionary programming and particle swarm optimization. From numerical results, it is found that the proposed artificial bee colony optimization based approach is able to provide better solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

a si , b si , c si , d si , e si :

Cost curve coefficients of ith thermal unit

C 1j , C 2j , C 3j , C 4j , C 5j , C 6j :

Power generation coefficients of jth hydro unit

I hjt :

Inflow rate of jth reservoir at time t

k :

Index of prohibited zones of a hydro unit

N s :

Number of thermal generating units

N h :

Number of hydro generating units

n j :

Number of prohibited zones for hydro unit j

P sit :

Output power of ith thermal unit at time t

P min si , P max si :

Lower and upper generation limits for ith thermal unit

P Dt :

Load demand at time t

P Lt :

Transmission loss at time t

P hjt :

Output power of jth hydro unit at time t

P min hj , P max hj :

Lower and upper generation limits for jth hydro unit

Q hjt :

Water discharge rate of jth reservoir at time t

Q min hj , Q max hj :

Minimum and maximum water discharge rate of jth reservoir

Q L hj,k , Q U hj,k :

Lower and upper bounds of kth prohibited zones of hydro unit j

R uj :

Number of upstream units directly above jth hydro plant

S hjt :

Spillage of jth reservoir at time t

t, T :

Time index and scheduling period

UR i , DR i :

Ramp-up and ramp-down rate limits of the ith thermal unit

V hjt :

Storage volume of jth reservoir at time t

V min hj , V max hj :

Minimum and maximum storage volume of jth reservoir

τ lj :

Water transport delay from reservoir l to j

References

  1. M.V.F. Pereira, L.M.V.G. Pinto, A decomposition approach to the economic dispatch of the hydrothermal systems. IEEE Trans. PAS 101(10), 3851–3860 (1982)

    Article  Google Scholar 

  2. Q. Xia, N. Xiang, S. Wang, B. Zhang, M. Huang, Optimal daily scheduling of Cascaded plants using a new algorithm of non-linear minimum cost network flow. IEEE Trans. PWRS 3(3), 929–935 (1988)

    Google Scholar 

  3. S. Chang, C. Chen, I. Fong, P.B. Luh, Hydroelectric generation scheduling with an effective differential programming. IEEE Trans. PWRS 5(3), 737–743 (1990)

    Google Scholar 

  4. A.A.F.M. Carneiro, S. Soares, P.S. Bond, A large scale of an optimal deterministic hydrothermal scheduling algorithm. IEEE Trans. PWRS 5(1), 204–211 (1990)

    Google Scholar 

  5. M.S. Salam, K.M. Nor, A.R. Hamdam, Hydrothermal scheduling based Lagrangian relaxation approach to hydrothermal coordination. IEEE Trans. PWRS. 13(1), 226–235 (1998)

    Google Scholar 

  6. W.S. Sifuentes, A. Vargas, Hydrothermal scheduling using benders decomposition: accelerating techniques. IEEE Trans. PWRS 22(3), 1351–1359 (2007)

    Google Scholar 

  7. K.P. Wong, Y.W. Wong, Short-term hydrothermal scheduling part 1: simulated annealing approach. IEE Proc. Gener. Transm. Distrib. 141(5), 497–501 (1994)

    Article  Google Scholar 

  8. P.C. Yang, H.T. Yang, C.L. Huang, Scheduling short-term hydrothermal generation using evolutionary Programming techniques. IEE Proc. Gener. Transm. Distrib. 143(4), 371–376 (1996)

    Article  Google Scholar 

  9. S.O. Orero, M.R. Irving, A genetic algorithm modeling framework and solution technique for short term optimal hydrothermal scheduling. IEEE Trans. PWRS 13(2), 501–518 (1998)

    Google Scholar 

  10. E. Gil, J. Bustos, H. Rudnick, Short-term hydrothermal generation scheduling model using a genetic algorithm. IEEE Trans. PWRS 18(4), 1256–1264 (2003)

    Google Scholar 

  11. N. Sinha, R. Chakrabarti, P.K. Chattopadhyay, Fast evolutionary programming techniques for short-term hydrothermal scheduling. IEEE Trans. PWRS 18(1), 214–220 (2003)

    Google Scholar 

  12. L. Lakshminarasimman, S. Subramanian, Short-term scheduling of hydrothermal power system with cascaded reservoirs by using modified differential evolution. IEE Proc. Gener. Transm. Distrib. 153(6), 693–700 (2006)

    Article  Google Scholar 

  13. P.K. Hota, A.K. Barisal, R. Chakrabarti, An improved PSO technique for short-term optimal hydrothermal scheduling. Elect. Power Syst. Res. 79(7), 1047–1053 (2009)

    Article  Google Scholar 

  14. R.K. Swain, A.K. Barisal, P.K. Hota, R. Chakrabarti, Short-term hydrothermal scheduling using clonal selection algorithm. Int. J. Electr. Power Energy Syst. 33, 647–656 (2011)

    Article  Google Scholar 

  15. P.K. Roy, Teaching learning based optimization for short-term hydrothermal scheduling problem considering valve point effect and prohibited discharge constraint. Int. J. Electr. Power Energ. Syst. 53, 10–19 (2013)

    Article  Google Scholar 

  16. E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems (Oxford University Press, New York, 1999)

    MATH  Google Scholar 

  17. R. Eberhart, Y. Shi, J. Kennedy, Swarm Intelligence (Morgan Kaufmann, San Francisco, 2001)

    Google Scholar 

  18. S. Camazine, J. Deneubourg, N.R. Franks, J. Sneyd, G. Theraula, E. Bonabeau, Self-Organization in Biological Systems (Princeton University Press, Princeton, 2003)

    MATH  Google Scholar 

  19. D. Karaboga, An idea based on honey bee swarm for numerical optimization, Technical Report-Tr06t, Erciyes University, Engineering faculty, Computer Engineering Department, Turkey, 2005

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Basu.

Appendix

Appendix

Table 7 Cost curve coefficients, ramp-rate limits and operating limits of thermal generators
Table 8 Load demand

Transmission loss coefficients are given below:

$$ B = 10^{ - 4} \times \left[ {\begin{array}{*{20}r} \hfill {0. 3 4} & \hfill {0. 1 3} & \hfill {0.0 9} & \hfill { - 0.0 1} & \hfill { - 0.0 8} & \hfill { - 0.0 1} & \hfill { - 0.0 2} \\ \hfill {0. 1 3 } & \hfill {0. 1 4} & \hfill {0. 10} & \hfill {0.0 1} & \hfill { - 0.0 5} & \hfill { - 0.0 2} & \hfill { - 0.0 1} \\ \hfill {0.0 9} & \hfill {0. 10} & \hfill {0. 3 1} & \hfill {0.00} & \hfill { - 0. 1 1} & \hfill { - 0.0 7} & \hfill { - 0.0 5} \\ \hfill { - 0.0 1} & \hfill {0.0 1} & \hfill {0.00} & \hfill {0. 2 4} & \hfill { - 0.0 8} & \hfill { - 0.0 4} & \hfill { - 0.0 7} \\ \hfill { - 0.0 8} & \hfill { - 0.0 5} & \hfill { - 0. 1 1} & \hfill { - 0.0 8} & \hfill { 1. 9 2} & \hfill {0. 2 7} & \hfill { - 0.0 2} \\ \hfill { - 0.0 1} & \hfill { - 0.0 2} & \hfill { - 0.0 7} & \hfill { - 0.0 4} & \hfill {0. 2 7} & \hfill {0. 3 2} & \hfill {0.00} \\ \hfill { - 0.0 2} & \hfill { - 0.0 1} & \hfill { - 0.0 5} & \hfill { - 0.0 7} & \hfill { - 0.0 2} & \hfill {0.00} & \hfill { 1. 3 5} \\ \end{array} } \right]{\text{ per MW}} $$
$$ B0 = 10^{ - 6} \times \left[ {-0. 7 500 \, -0.0 600 \, 0. 7000 \, -0.0 300 \, 0. 2 700 \, -0. 7 700 \, -0.0 100} \right] $$
$$ B00 \, = \, 0.55{\text{ MW}} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basu, M. Artificial Bee Colony Optimization for Short-Term Hydrothermal Scheduling. J. Inst. Eng. India Ser. B 95, 319–328 (2014). https://doi.org/10.1007/s40031-014-0119-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-014-0119-7

Keywords

Navigation