Skip to main content
Log in

Invention of a Semiautomatic Machine with an Electro-Pneumatic Control System for the Mushroom Spawn Compression-Molding Process

  • ORIGINAL CONTRIBUTION
  • Published:
Journal of The Institution of Engineers (India): Series A Aims and scope Submit manuscript

Abstract

The purpose of this work is to develop and implement a semiautomatic electro-pneumatic mushroom spawn press and also to assess its functionality and the physical properties of the mushroom spawn. The developed machine has a width of 1 m, a length of 1 m, and a height of 1.5 m. It is made up of many key components, including the machine’s structural steel, a material feeding chute system, a compression cylinder, and an electro-pneumatic control system. It can fill and compress six mushroom blocks at once, each weighing between 800 and 1000 g. The development results revealed that compressing mushroom culture using this machine could reduce working time by 9.57 ± 0.22 s/time. There was a difference between the methods of pressing utilizing a mushroom spawn machine of the manufacturer and the traditional hand pressing method at the statistical significance level of p ≤ 0.05. The devised technique of pressing with a semiautomatic mushroom spawn press utilizing an electro-pneumatic system could reduce the working time by 74.23% more than pressing using the mushroom spawn press of the manufacturer. Besides, compared to the traditional manual compression approach, the production time was reduced by 87.62%. It has a production capacity of approximately 451.58 ± 10.53 bags/h, which is four times greater than the traditional mushroom pressing method. At a significance level of 0.05, there was no significant difference in the physical properties of the mushroom culture prepared from the three compression techniques. The moisture content of the spawn was between 65 and 66%, the height of the spawn was 15–16 cm, the dry weight of the spawn was 899–915 g, and the average spawn density was between 607 and 626 kg/m3. Furthermore, the spawn has an average diameter of 11 cm, which is the size of the mushroom spawn bags required by manufacturers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Subramanian, K. Shanmugasundaram, Optimization of casing process for enhanced bioefficiency of Calocybe indica, an indigenous tropical edible mushroom. Int. J. Recent. Sci. 6, 2594–2598 (2015)

    Google Scholar 

  2. C. Sánchez, Cultivation of Pleurotus ostreatus and other edible mushrooms. Appl. Microbiol. Biotechnol. 85, 1321–1337 (2010). https://doi.org/10.1007/s00253-009-2343-7

    Article  Google Scholar 

  3. N. Arshadi, H. Nouri, H. Moghimi, Increasing the production of the bioactive compounds in medicinal mushrooms: an omics perspective. Microb. Cell Fact. 22(1), 11 (2023). https://doi.org/10.1186/s12934-022-02013-x

    Article  Google Scholar 

  4. A.G.T. Niego, C. Lambert, P. Mortimer, N. Thongklang, S. Rapior, M. Grosse, H. Schrey, E. Charria-Girón, A. Walker, K.D. Hyde, M. Stadler, The contribution of fungi to the global economy. Fung. Divers. 121(1), 95–137 (2023). https://doi.org/10.1007/s13225-023-00520-9

    Article  Google Scholar 

  5. K.N. Lesa, M.U. Khandaker, F.M. Rashed Iqbal, R. Sharma, F. Islam, S. Mitra, T.B. Emran, Nutritional value, medicinal importance, and health-promoting effects of dietary mushroom (Pleurotus ostreatus). J. Food Qual. 2022, 1–9 (2022). https://doi.org/10.1155/2022/2454180

    Article  Google Scholar 

  6. V. Sharma, D.M. Kumar, S. Singh, A. Pandey, M. Kumar, Application of substrate supplements to the yield oyster mushrooms (Pleurotus ostreatus var. florida). Int. J. Environ. Clim. Change 13(11), 1878–1885 (2023). https://doi.org/10.9734/ijecc/2023/v13i113345

    Article  Google Scholar 

  7. L. Dicks, S. Ellinger, Effect of the Intake of Oyster Mushrooms (Pleurotus ostreatus) on cardiometabolic parameters—a systematic review of clinical trials. Nutrients 12(4), 1134 (2020). https://doi.org/10.3390/nu12041134

    Article  Google Scholar 

  8. M.E. Effiong, C.P. Umeokwochi, I.S. Afolabi, S.N. Chinedu, Assessing the nutritional quality of Pleurotus ostreatus (oyster mushroom). Front. Nutri. 10, 1279208 (2024). https://doi.org/10.3389/fnut.2023.1279208

    Article  Google Scholar 

  9. D. Majesty, E. Ijeoma, K. Winner, O. Prince, Nutritional, anti-nutritional and biochemical studies on the oyster mushroom Pleurotus ostreatus. EC. Nutri. 14(1), 36–59 (2019)

    Google Scholar 

  10. O.F. Fasoranti, C.O. Ogidi, V.O. Oyetayo, Nutrient contents and antioxidant properties of Pleurotus spp. cultivated on substrate fortified with Selenium. Curr. Res. Environ. Appl. Mycol. 9(1), 66–76 (2019)

    Article  Google Scholar 

  11. M.B. Bellettini, F.A. Fiorda, H.A. Maieves, G.L. Teixeira, S. Ávila, P.S. Hornung, A.M. Júnior, R.H. Ribani, Factors affecting mushroom Pleurotus spp. Saud. J. Biol. Sci. 26(4), 633–646 (2019). https://doi.org/10.1016/j.sjbs.2016.12.005

    Article  Google Scholar 

  12. J. Kumla, N. Suwannarach, A. Jaiyasen, B. Bussaban, S. Lumyong, Development of an edible wild strain of thai oyster mushroom for economic mushroom production. Chia. Mai. J. Sci. 40(2), 161–172 (2013)

    Google Scholar 

  13. R. Sanmee, B. Dell, P. Lumyong, K. Izumori, S. Lumyong, Nutritive value of popular wild edible mushrooms from northern Thailand. Food Chem. 82(4), 527–532 (2003). https://doi.org/10.1016/S0308-8146(02)00595-2

    Article  Google Scholar 

  14. A. Neeraj, R.S. Jarial, K. Jarial, J.N. Bhatia, Comprehensive review on oyster mushroom species (Agaricomycetes): morphology, nutrition, cultivation and future aspects. Heliyon 10, e26539 (2024). https://doi.org/10.1016/j.heliyon.2024.e26539

    Article  Google Scholar 

  15. A. Anand, S. Kumar, N. Saha, A. Kumar, R. Bhawar, V. Kumar, S. Kumari, Economics and resource-use efficiency analysis of oyster mushroom production in the Bhagalpur District of Bihar, India. Front. Crop. Improv. 10, 3817–3825 (2022). https://doi.org/10.46852/0424-2513.3.2022.18

    Article  Google Scholar 

  16. A. Imtiaj, S.A. Rahman, Economic viability of mushrooms cultivation to poverty reduction in Bangladesh. Trop. Sub. Agroe. 8(1), 93–99 (2008)

    Google Scholar 

  17. H. El-Ramady, N. Abdalla, Z. Fawzy, K. Badgar, X. Llanaj, G. Törős, P. Hajdú, Y. Eid, J. Prokisch, Green biotechnology of oyster mushroom (Pleurotus ostreatus L.): a sustainable strategy for myco-remediation and bio-fermentation. Sustainability 14(6), 3667 (2022). https://doi.org/10.3390/su14063667

    Article  Google Scholar 

  18. A. Getachew, A. Keneni, M. Chawaka, Production of oyster mushroom (Pleurotus ostreatus) on substrate composed from wheat straw, waste paper and cotton seed waste. Int. J. Microb. Biol. 4(2), 38–44 (2019)

    Article  Google Scholar 

  19. K. Saisin, P. Saisin, Design construction and efficiency of press equipment mushroom cube. Voc. Ed. Inn. Res. J. 1(1), 55–61 (2017)

    Google Scholar 

  20. P. Vengsungnle, W. Srisorn, K. Chaibundit, J. Jongpluempiti, Development of a semi-automatic straw mushroom substrate briquetting machine. Farm. Eng. Auto. Tech. J. 7(1), 10–20 (2021)

    Google Scholar 

  21. K. Mahamad, P. Mansuriwong, W. Petlamul, Application of smart farm system to enhance phoenix oyster mushroom production. ASEAN J. Sci. Tech. Rep. 24(3), 47–57 (2021)

    Article  Google Scholar 

  22. J. Rivera, J. Coelho, R. Silva, T. Miranda, F. Castro, N. Cristelo, Compressed earth blocks stabilized with glass waste and fly ash activated with a recycled alkaline cleaning solution. J. Clean. Prod. 284, 124783 (2021). https://doi.org/10.1016/j.jclepro.2020.124783

    Article  Google Scholar 

  23. I.I. Akinwumi, A.H. Domo-Spiff, A. Salami, Marine plastic pollution and affordable housing challenge: shredded waste plastic stabilized soil for producing compressed earth bricks. Case Stud. Const. Mater. 11, e00241 (2019). https://doi.org/10.1016/j.cscm.2019.e00241

    Article  Google Scholar 

  24. J.A. Cottrell, M. Ali, A. Tatari, D.B. Martinson, An investigation into the influence of geometry on compressed earth building blocks using finite element analysis. Const. Build. Mater. 273, 121997 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121997

    Article  Google Scholar 

  25. M. Priyadarshini, J.P. Giri, M. Patnaik, Variability in the compressive strength of non-conventional bricks containing agro and industrial waste. Case Stud. Const. Mater. 14, e00506 (2021). https://doi.org/10.1016/j.cscm.2021.e00506

    Article  Google Scholar 

  26. S.S.S. Sarita, C. Somdutt, R.S. Gautam, Optimization of spawn rate for Oyster mushroom cultivation in southern Rajasthan. The Phar. In. J. 10(9), 1783–1787 (2021)

    Google Scholar 

  27. H. Tang, F. Xu, T. Guan, C. Xu, J. Wang, Design and test of a pneumatic type of high-speed maize precision seed metering device. Comput. Electron. Agric. 211, 107997 (2023). https://doi.org/10.1016/j.compag.2023.107997

    Article  Google Scholar 

  28. M. Precoppe, T. Tran, A. Chapuis, J. Müller, A. Abass, Improved energy performance of small-scale pneumatic dryers used for processing cassava in Africa. Biosyst. Eng. 151, 510–519 (2016). https://doi.org/10.1016/j.biosystemseng.2016.10.001

    Article  Google Scholar 

  29. G.S. Shashikumar, M. Kumaran, C. Pandey, L. Ramana, K.A. Edukondalu, D.J.S. Kumar, Design and evaluation of portable manually operated spawn spreading machine for Oyster Mushroom (Pleurotus florida) cultivation. J. Sci. Ind. Res. 81(8), 807–813 (2022)

    Google Scholar 

  30. C. Du, A.R. Plummer, D.N. Johnston, Performance analysis of a new energy-efficient variable supply pressure electro-hydraulic motion control method. Control. Eng. Pract. 60, 87–98 (2017). https://doi.org/10.1016/j.conengprac.2017.01.002

    Article  Google Scholar 

  31. B.I. Oladapo, V.A. Balogun, A.O. Adeoye, I.E. Olubunmi, S.O. Afolabi, Experimental analysis of electro-pneumatic optimization of hot stamping machine control systems with on-delay timer. J. Appl. Res. Technol. 15(4), 356–364 (2017). https://doi.org/10.1016/j.jart.2017.03.006

    Article  Google Scholar 

  32. B.B. Gaikwad, N.P.S. Sirohi, Design of a low-cost pneumatic seeder for nursery plug trays. Biosyst. Eng. 99(3), 322–329 (2008). https://doi.org/10.1016/j.biosystemseng.2007.10.017

    Article  Google Scholar 

  33. D.M.N. Bristol, E.J.B. Agustin, H.A. Alcaraz, Bibliometric analysis on the application of electro-pneumatic control system as automation technology. Int. J. Pro. Res. Sci. Eng. 3(4), 60–67 (2022)

    Google Scholar 

  34. E. Navas, R. Fernández, D. Sepúlveda, M. Armada, P. Gonzalez-de-Santos, Soft grippers for automatic crop harvesting: a review. Sensors 21(8), 2689 (2021). https://doi.org/10.3390/s21082689

    Article  Google Scholar 

  35. D. Alemu, M. Tafesse, Y.G. Deressa, Production of Mycoblock from the mycelium of the fungus Pleurotus ostreatus for use as sustainable construction materials. Adv. Mater. Sci. Eng. 2022, 2876643 (2022). https://doi.org/10.1155/2022/2876643

    Article  Google Scholar 

  36. A.P. Puvanasvaran, C.Z. Mei, V.A. Alagendran, Overall equipment efficiency improvement using time study in an aerospace industry. Procedia Eng. 68, 271–277 (2013). https://doi.org/10.1016/j.proeng.2013.12.179

    Article  Google Scholar 

  37. J. Kim, A. Golabchi, S. Han, D.E. Lee, Manual operation simulation using motion-time analysis toward labor productivity estimation: a case study of concrete pouring operations. Auto. Const. 126, 103669 (2021). https://doi.org/10.1016/j.autcon.2021.103669

    Article  Google Scholar 

  38. Z. Yang, F. Zhang, B. Still, M. White, P. Amstislavski, Physical and mechanical properties of fungal mycelium-based biofoam. J. Mater. Civ. Eng. 29(7), 04017030 (2017). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001866

    Article  Google Scholar 

  39. B. Jyoti, D.S. Thorat, K.P. Singh, M. Kumar, A. Magar, P.B. Singh, Design and development of site specific grape vineyard fertilizer applicator prototype. J. Sci. Indust. Res. 81(4), 402–407 (2022)

    Google Scholar 

  40. K. Singhan, S. Ninlawat, N. Promlung, The development of compressing mushroom grow machine. J. Inn. Tech. Res. 1(1), 119–129 (2017)

    Google Scholar 

  41. S.I. Zubairi, N.A.S.M. Zabidi, Z.Z. Azman, S.N.D.M. Kamaruddin, Z.M.K. Kasim, A.M. Lazim, M.S.M. Jamil, Pleurotus ostreatus cultivation: physicochemical characteristics of a robust preblocks oyster mushroom substrate with absorptive starch binders. Sains Malays. 51(2), 329–343 (2022)

    Article  Google Scholar 

  42. H. Tang, W. Xu, J. Zhao, C. Xu, J. Wang, Comparison of rice straw compression characteristics in vibration mode based on discrete element method. Biosyst. Eng. 230, 191–204 (2023). https://doi.org/10.1016/j.biosystemseng.2023.04.009

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Faculty of Agricultural and Food Technology for the place and equipment for research. In addition, the authors would like to thank the Department of Production Engineering Technology, Faculty of Industrial Technology, Pibulsongkram Rajabhat University for providing the facilities for this research.

Funding

This research was funded by the Research and Development Institute of Pibulsongkram Rajabhat University, Thailand, fiscal year 2022 (RDI-2–65-M-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanakorn Jantarasricha.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests and any personal relationships, which could have appeared to influence the study reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumrit, T., Bunsak, A., Uprapui, A. et al. Invention of a Semiautomatic Machine with an Electro-Pneumatic Control System for the Mushroom Spawn Compression-Molding Process. J. Inst. Eng. India Ser. A (2024). https://doi.org/10.1007/s40030-024-00803-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40030-024-00803-7

Keywords

Navigation