Skip to main content
Log in

Potential of Microrhizomes for In Vitro Gingerol and Shogaol Synthesis in Ginger (Zingiber officinale Rosc.)

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Five genotypes of ginger cultured in vitro produced calli and microrhizomes, and they were evaluated for pungency principles at different induction periods using HPLC. Differentiation and growth of microrhizomes and calli and yield of gingerols were found genotype dependent. Accumulation of oleoresin, gingerols and shogaol increased with time duration, reaching the highest after 3 months of induction. The microrhizomes and calli of genotype cv. Aswathy yielded the highest gingerols throughout the three-month induction period. However, microrhizomes accumulated 50 times (average 26.2 times) higher total gingerols compared to calli, irrespective of the genotypes. This study proved the potential of microrhizomes for in vitro gingerol synthesis. It is suggested that large-scale production of microrhizomes can partially substitute the conventional field growing of ginger for harvesting of high-quality clean gingerols and shogaol with no residue of the pesticides used during the field growing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Srinivasan S (2017) Ginger rhizomes (Zingiber officinale): a spice with multiple health beneficial potentials. Pharma Nutr 5(1):18–28. https://doi.org/10.1016/j.phanu.2017.01.001

    Article  Google Scholar 

  2. Ahumada MCR, Timmermann BN, Gang DR (2006) Biosynthesis of curcuminoids and gingerols in turmeric (Curcuma longa) and ginger (Zingiber officinale): identification of curcuminoid synthase and hydroxycinnamoyl-CoA thioesterases. Phytochemistry 67:2017–2029. https://doi.org/10.1016/j.phytochem.2006.06.028

    Article  CAS  Google Scholar 

  3. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15(3):473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  4. Sharma TR, Singh BM (1995) In vitro microrhizome production in Zingiber officianale (Rosc). Plant Cell Rep 15:274–277. https://doi.org/10.1007/BF00193735

    Article  CAS  PubMed  Google Scholar 

  5. Cousins MM, Adelberg JW, Chen F, Rieck J (2007) Antioxidant capacity of fresh and dried rhizomes from four clones of turmeric (Curcuma longa L.) grown in vitro. Ind Crops Prod 25:129–135. https://doi.org/10.1016/j.indcrop.2006.08.004

    Article  Google Scholar 

  6. Swarnathilaka DBR, Kottearachchi NS, Weerakkody WJSK (2016) Factors affecting on induction of microrhizomes in ginger (Zingiber officinale Rosc.), cultivar local from Sri Lanka. Biotechnol J Int 12(2): 23903 doi:https://doi.org/10.9734/BBJ/2016/23903

  7. An NH, Chien TTM, Nhi HTH, Nga NTM, Phuc TT, Thuy LTN, Thanh TVB, Nguyen PTT, Phuong TTB (2020) The effects of sucrose, silver nitrate, plant growth regulators, and ammonium nitrate on microrhizome induction in perennially-cultivated ginger (Zingiber officinale Roscoe) from Hue, Vietnam. Acta Agrobot 73(2):7329. https://doi.org/10.5586/aa.7329

    Article  Google Scholar 

  8. Zahid NA, Jaafar HZE, Hakiman M (2021) Alterations in microrhizome induction, shoot multiplication and rooting of ginger (Zingiber officinale Roscoe) var. Bentong with regards to sucrose and plant growth regulators application. Agronomy 11: 320. doi:https://doi.org/10.3390/agronomy11020320

  9. Paul R, Shylaja MR (2010) Indirect organogenesis in ginger. Indian J Hortic 67:513–517

    Google Scholar 

  10. Shylaja MR, Parvathy KI, Lazer L (2016) Microrhizome technology for large scale production of disease free seed rhizomes of ginger (Zingiber officinale Rosc.). Indian J Arecanut Spices Med Plants 19:6–9

    Google Scholar 

  11. Shylaja MR, Sabitha KR, Kumar SP, Narayanankutty C, Narayanankutty MC, Mathew D (2018) Production technology for in vitro induced microrhizomes of ginger in high-tech polyhouse. Indian J Arecanut Spices Med Plants 20:3–7. https://doi.org/10.2137/ssrn.3577809

    Article  Google Scholar 

  12. El-Nabarawy MA, El-Kafafi SH, Hamza MA, Omar MA (2015) The effect of some factors on stimulating the growth and production of active substances in Zingiber officinale callus cultures. Ann Agric Sci 60:1–9. https://doi.org/10.1016/j.aoas.2014.11.020

    Article  Google Scholar 

  13. Aly UI, Abbas MS, Taha HS, Gaber EI (2013) Characterization of 6-gingerol for in vivo and in vitro ginger (Zingiber officinale) using high performance liquid chromatography. Global J Bot Sci 1:1–8. https://doi.org/10.12974/2311-858X.2013.01.01.2

    Article  Google Scholar 

  14. Marfori E, Jane CM (2018) Influence of sucrose on growth and [6]-gingerol production of in vitro-grown ginger (Zingiber officinale Rosc). Int J Pharmacogn Phytochem Res 10:17–20. https://doi.org/10.25258/phyto.v10i01.11926

    Article  Google Scholar 

  15. Paul R, Shylaja MR (2012) Field evaluation of tissue culture raised somaclones of ginger (Zingiber officinale) for productivity-linked traits. J Med Aromatic Plant Sci 34:20–27

    Google Scholar 

  16. Snedecor GW, Cochran WG (1956) Statistical methods applied to experiments in agriculture and biology, 5th edn. Iowa State University Press, Ames

    Google Scholar 

  17. Kambaska KB, Santilata S (2009) Effect of plant growth regulator on micropropagation of ginger (Zingiber officinale Rosc.) cv-Suprava and Suruchi. J Agric Technol 5:271–280

    Google Scholar 

  18. Archana CP, Pillai GS, Balachandran I (2013) In vitro microrhizome induction in three high yielding cultivars of Zingiber officinale Rosc. and their phytopathological analysis. Int J Adv Biotechnol Res 4:296–300

    CAS  Google Scholar 

  19. Gahan PB, George EF (2008) Adventitious regeneration. Plant propagation by tissue culture. In: George MA, Klerk GD (eds) Plant propagation by tissue culture, 3rd edn. Springer, New York, pp 377–383

    Google Scholar 

  20. Looney NE, Taylor JS, Pharis RP (1988) Relationship of endogenous gibberellin and cytokinin levels in shoot tip to apical form in four strains of ‘McIntosh’ apple. J Am Soc Hortic Sci 113:395–398

    CAS  Google Scholar 

  21. Marino G (1988) In vitro (14C) labelled 6-benzyladenine uptake and 14CO2 evolution in two Japanese plum cultivars. Plant Cell Tiss Org Cult 13:49–59. https://doi.org/10.1007/BF00043046

    Article  CAS  Google Scholar 

  22. Jean M, Cappadocia M (1991) In vitro tuberization in Dioscorea alata L. ‘Brazo fuerte’ and ‘Florida’ and D. Abbssinica Hoch. Plant Cell Tiss Org Cult 26:147–152. https://doi.org/10.1007/BF00039936

    Article  Google Scholar 

  23. George EF (1993) Plant propagation by tissue culture Part 1. In: The Technology, 2nd edn. Exegetics Ltd, England, pp 3468

  24. Purseglove JW, Brown EG, Green CL, Robins SRJ (1981) Spices. Longman, London and New York, pp 447–813

    Google Scholar 

  25. Pawar N, Pai S, Nimbalkar M, Dixit G (2015) RP-HPLC analysis of phenolic antioxidant compound 6-gingerol from in vitro cultures of Zingiber officinale Rosc. Plant Sci Today 2:24–28. https://doi.org/10.14719/pst.2015.2.1.103

    Article  CAS  Google Scholar 

  26. Ghasemzadeh A, Jaafar HZ, Ashkani S, Rahmat A, Juraimi AS, Puteh A, Mohamed MTM (2016) Variation in secondary metabolite production as well as antioxidant and antibacterial activities of Zingiber zerumbet (L.) at different stages of growth. BMC Compl Med Ther 16:104 doi:https://doi.org/10.1186/s12906-016-1072-6

  27. Zarate R, Yeoman M (1994) Studies of the cellular localization of the phenolic pungent principle of ginger, Zingiber officinale Roscoe. New Phytol 126:295–300. https://doi.org/10.1111/j.1469-8137.1994tb03948.x

    Article  CAS  Google Scholar 

  28. Arijanti S, Suryaningsih DR (2019) Biosynthesis of secondary metabolites (gingerol, shogaol, and zingerone) from callus of three ginger varieties. Drug Invent Today 11:496–500

    Google Scholar 

  29. Janarthanam M, Gopalakrishnan B, Sekar T (2010) Secondary metabolite production in callus cultures of Stevia rebaudiana Bertoni. Bangladesh J Sci Ind Res 45:243–248. https://doi.org/10.3329/bjsir.v45i3.6532

    Article  CAS  Google Scholar 

  30. Dehghani I, Mostajeran A, Asghari G (2011) In vitro and in vivo production of gingerols and zingiberene in ginger plant (Zingiber officinale Roscoe). Iran J Pharmaceut Res 7(2):117–121

    CAS  Google Scholar 

Download references

Funding

Moved to title page for double-blind peer review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepu Mathew.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of Data and Material

Moved to title page for double-blind peer review.

Code availability

Not applicable.

Consent to Participate

All authors have read the content of the manuscript consent to participate in the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Significance statement: This paper details viable and alternate strategy for the clean synthesis of industrially important gingerols and shogaol. The protocols and varietal, explant and maturity factors, for the maximum in vitro recovery of these molecules, are discussed.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, M., Shylaja, M.R., Mathew, D. et al. Potential of Microrhizomes for In Vitro Gingerol and Shogaol Synthesis in Ginger (Zingiber officinale Rosc.). Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 92, 121–129 (2022). https://doi.org/10.1007/s40011-021-01314-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-021-01314-2

Keywords

Navigation