Skip to main content

Advertisement

Log in

Insights into Interdisciplinary Approaches for Bioremediation of Organic Pollutants: Innovations, Challenges and Perspectives

  • Review
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Modern industrialization has originated a tremendous industrial growth. Discharge of industrial effluent is a critical threat to a safe environment. Removal of various pollutants from industrial wastewater is obligatory for controlling environmental pollution. Bioremediation using biotechnological interventions has attracted greater attention among the researchers in the field of control and abatement of environmental pollution. This review is aimed to introduce methods for bioremediation on the removal of organic pollutants from industrial wastewater that have been discussed, and the kinetic models that are related to it have been introduced. In addition, biotechnological interventions on bioremediation of pollutants have been discussed fingerprinting of microbial sp. present at polluted sites. Microbial electrochemical technologies such as a green technology for the removal of pollutants from industrial effluents and simultaneous resource recovery from industrial waste have been discussed to generate up-to-date scientific literature. This review also provides detailed knowledge gaps, challenges and research perspectives related to the topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Paździor K, Bilińska L, Ledakowicz S (2019) A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chem Eng J 376:120597. https://doi.org/10.1016/j.cej.2018.12.057

    Article  CAS  Google Scholar 

  2. Varjani SJ, Srivastava VK, Raveendran S, Thakur IS, Gnansounou E (2018) Culture based approaches, dependent and independent, for microbial community fractions in petroleum oil reservoirs. Indian J Exp Biol 56:444–450. https://doi.org/10.1016/j.biortech.2017.08.02

    Article  CAS  Google Scholar 

  3. Zaiming C, Xin X, Baoshan X, Baoliang C (2019) pH-dependent sorption of sulfonamide antibiotics onto biochars: sorption mechanisms and modelling. Environ Pollut 248:48–56. https://doi.org/10.1016/j.envpol.2019.01.087

    Article  CAS  Google Scholar 

  4. Wu Q, Wang H, Yi C (2018) Preparation of photo-Fenton heterogeneous catalyst (Fe-TS-1 zeolite) and its application in typical azo dye decoloration. J Photochem Photobiol A Chem 356:138–149. https://doi.org/10.1016/j.jphotochem.2017.12.041

    Article  CAS  Google Scholar 

  5. Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223:277–286. https://doi.org/10.1016/j.biortech.2016.10.037

    Article  CAS  PubMed  Google Scholar 

  6. Mishra B, Varjani S, Iragavarapu GP, Ngo HH, Guo W, Vishal B (2019) Microbial fingerprinting of potential biodegrading organisms. Curr Pollut Rep 5:181–197. https://doi.org/10.1007/s40726-019-00116-5

    Article  CAS  Google Scholar 

  7. Xu R, Su M, Liu Y, Chen Z, Ji C, Yang M, Chang X, Chen D (2020) Comparative study on the removal of different-type organic pollutants on hierarchical tetragonal bismutite microspheres: adsorption, degradation and mechanism. J Clean Prod 242:118366. https://doi.org/10.1016/j.jclepro.2019.118366

    Article  CAS  Google Scholar 

  8. Sun C, Yang S-T, Gao Z, Yang S, Yilihamu A, Ma Q, Zhao R-S, Xue F (2019) Fe3O4/TiO2/reduced graphene oxide composites as highly efficient Fenton-like catalyst for the decoloration of methylene blue. Mater Chem Phys 223:751–757. https://doi.org/10.1016/j.matchemphys.2018.11.056

    Article  CAS  Google Scholar 

  9. Zhang X, Lin X, He M, Li H, Wang W, Yang ST (2016) Carbon coated titanium electrode for the electrolytic decoloration of methylene blue. J Water Process Eng 13:183–188. https://doi.org/10.1016/j.jwpe.2016.09.004

    Article  Google Scholar 

  10. Wang T, Qu G, Ren J, Sun Q, Liang D, Hu S (2016) Organic acids enhanced decoloration of azo dye in gas phase surface discharge plasma system. J Hazard Mater 302:65–71. https://doi.org/10.1016/j.jhazmat.2015.09.051

    Article  CAS  PubMed  Google Scholar 

  11. Zhang G, Okajima I, Sako T (2016) Decomposition and decoloration of dyeing wastewater by hydrothermal oxidation. J Supercrit Fluids 112:136–142. https://doi.org/10.1016/j.supflu.2015.10.014

    Article  CAS  Google Scholar 

  12. Shao N, Li S, Yan F, Su Y, Liu F, Zhang Z (2020) An all-in-one strategy for the adsorption of heavy metal ions and photodegradation of organic pollutants using steel slag-derived calcium silicate hydrate. J Hazard Mater 382:121120. https://doi.org/10.1016/j.jhazmat.2019.121120

    Article  CAS  PubMed  Google Scholar 

  13. Li K, Zhou M, Liang L, Jiang L, Wang W (2019) Ultrahigh-surface-area activated carbon aerogels derived from glucose for high-performance organic pollutants adsorption. J Colloid Interface Sci 546:333–343. https://doi.org/10.1016/j.jcis.2019.03.076

    Article  CAS  PubMed  Google Scholar 

  14. Limaa DR, Hosseini-Bandegharaei A, Thued PS, Limaa EC, de Albuquerquea YRT, dos Reisa GS, Umpierresd CS, Diasa SLP, Trang HN (2019) Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells. Colloids Surf A Physicochem Eng Asp 583:123966. https://doi.org/10.1016/j.colsurfa.2019.123966

    Article  CAS  Google Scholar 

  15. Abutaleb A, Tayeb AM, Mahmoud MA, Daher AM, Desouky OA, Yahya Bakather O, Farouq R (2019) Removal and recovery of U(VI) from aqueous effluents by flax fiber: adsorption, desorption and batch adsorber proposal. J Adv Res. https://doi.org/10.1016/j.jare.2019.10.011

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kaur K, Jindal R (2018) Synergistic effect of organic–inorganic hybrid nanocomposite ion exchanger on photocatalytic degradation of Rhodamine-B dye and heavy metal ion removal from industrial effluents. J Environ Chem Eng 6:7091–7101. https://doi.org/10.1016/j.jece.2018.09.065

    Article  CAS  Google Scholar 

  17. Martins PJM, Reis PM, Martins RC, Gando-Ferreira LM, Quinta-Ferreira RM (2017) Iron recovery from the Fenton’s treatment of winery effluent using an ion-exchange resin. J Mol Liq 242:505–511. https://doi.org/10.1016/j.molliq.2017.07.041

    Article  CAS  Google Scholar 

  18. Víctor-Ortega MD, Ochando-Pulido JM, Airado-Rodríguez D, Martínez-Ferez A (2016) Comparison between different ion exchange resins combinations for final treatment of olive mill effluent. Sep Purif Technol 158:374–382. https://doi.org/10.1016/j.seppur.2015.12.041

    Article  CAS  Google Scholar 

  19. Ladeira ACQ, Morais CA (2005) Uranium recovery from industrial effluent by ion exchange—column experiments. Miner Eng 18:1337–1340. https://doi.org/10.1016/j.mineng.2005.06.012

    Article  CAS  Google Scholar 

  20. Kramer J, Driessen WL, Koch KR, Reedijk J (2002) Highly selective extraction of platinum group metals with silica-based (poly) amine ion exchangers applied to industrial metal refinery effluents. Hydrometallurgy 64:59–68. https://doi.org/10.1016/s0304-386x(02)00010-5

    Article  CAS  Google Scholar 

  21. Yangali-Quintanilla V, Maeng SK, Fujioka T, Kennedy M, Li Z, Amy G (2011) Nanofiltration vs. reverse osmosis for the removal of emerging organic contaminants in water reuse. Desalin Water Treat 34:50–56. https://doi.org/10.5004/dwt.2011.2860

    Article  CAS  Google Scholar 

  22. Agata EL, Santiago GR, José MQA (2019) Removal of emerging contaminants from wastewater using reverse osmosis for its subsequent reuse: pilot plant. J Water Process Eng. https://doi.org/10.1016/j.jwpe.2019.100800

    Article  Google Scholar 

  23. Ramasundaram S, Yoo HN, Song KG, Lee J, Choi KJ, Hong SW (2013) Titanium dioxide nanofibers integrated stainless steel filter for photocatalytic degradation of pharmaceutical compounds. J Hazardrous Mater 258–259:124–132. https://doi.org/10.1016/j.jhazmat.2013.04.047

    Article  CAS  Google Scholar 

  24. Pastrana-Martinez LM, Morales-Torres S, Figueiredo JL, Faria JL, Silva AMT (2015) Graphene oxide-based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water. Water Res 77:179–190. https://doi.org/10.1016/j.watres.2015.03.014

    Article  CAS  PubMed  Google Scholar 

  25. Fischer K, Grimm M, Meyers J, Dietrich C, Gläser R, Schulze A (2015) Photoactive microfiltration membranes via directed synthesis of TiO2 nanoparticles on the polymer surface for removal of drugs from water. J Membr Sci 478:49–57. https://doi.org/10.1016/j.memsci.2015.01.009

    Article  CAS  Google Scholar 

  26. Li X, Zhao Q, Wang X, Li Y, Zhou Q (2017) Surfactants selectively reallocated the bacterial distribution in soil bioelectrochemical remediation of petroleum hydrocarbons. J Hazard Mater 344:23–32. https://doi.org/10.1016/j.jhazmat.2017.09.050

    Article  CAS  PubMed  Google Scholar 

  27. Li X, Wang X, Zhao Q, Wan L, Li Y, Zhou Q (2016) Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells. Biosens Bioelectron 85:135–141. https://doi.org/10.1016/j.bios.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  28. Zhou L, Deng D, Zhang D, Chen Q, Kang J, Fan N, Liu Y (2016) Microbial electricity generation and isolation of exoelectrogenic bacteria based on petroleum hydrocarbon-contaminated soil. Electroanalysis 28:1510–1516. https://doi.org/10.1002/elan.201501052

    Article  CAS  Google Scholar 

  29. Li X, Wang X, Wan L, Zhang Y, Li N, Li D, Zhou Q (2016) Enhanced biodegradation of aged petroleum hydrocarbons in soils by glucose addition in microbial fuel cells. J Chem Technol Biotechnol 91:267–275. https://doi.org/10.1002/jctb.4660

    Article  CAS  Google Scholar 

  30. Mao D, Lu L, Revil A, Zuo Y, Hinton J, Ren ZJ (2016) Geophysical monitoring of hydrocarbon-contaminated soils remediated with a bioelectrochemical system. Environ Sci Technol 50:8205–8213. https://doi.org/10.1021/acs.est.6b00535

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Bishwambhar Mishra acknowledges Chaitanya Bharathi Institute of Technology, Hyderabad, India, for providing good infrastructure and smart digital library facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunita Varjani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, B., Varjani, S., Pradhan, I. et al. Insights into Interdisciplinary Approaches for Bioremediation of Organic Pollutants: Innovations, Challenges and Perspectives. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 90, 951–958 (2020). https://doi.org/10.1007/s40011-020-01187-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-020-01187-x

Keywords

Navigation