Skip to main content
Log in

Structure–Function Analysis of Liver Flavin Monooxygenase 3 that Drives Trimethylaminuria in Humans

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Mutations in human flavin monooxygenase-3 (hFMO3) enzyme have been implicated in the rare autosomal recessive disorder called trimethylaminuria (TMAU). In this inheritable disease, patients display elevated levels of trimethylamine (TMA) due to reduced or abolished N-oxygenation activity of the hFMO3 enzyme. TMA is a gas with characteristic fishy odour that is exuded in TMAU patients. Here, we have mapped forty-four TMAU-associated mutations on the atomic model of hFMO3, analyzed their spatial distributions and correlated these data with enzymatic implications of the mutants. The analysis suggests that hFMO3 mutations fall into distinct groups of six spatial clusters. The mutations are distributed throughout hFMO3 three-dimensional structure, and are either surface exposed or buried. In terms of catalytic activity, fifteen mutations abolish it, sixteen diminish it and the remaining thirteen mutations have not been unexplored experimentally. We have collated data on known xenobiotics and metabolites that interact with hFMO3 that can either serve as competitive inhibitors or drive production of secondary metabolites. The present study also reveals biochemical linkages between hFMO3 and few commonly used human drugs. These analyses thus provide a structural platform for understanding hFMO3 mutations and their enzymatic activities within the TMAU disease phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ziegler D (1980) Microsomal flavin-containing monooxygenase: oxygenation of nucleophilic nitrogen and sulfur compounds. Enzym. Basis Detoxication 1:201–277

    Article  CAS  Google Scholar 

  2. Cashman JR (2001) Enzyme systems that metabolise drugs and other xenobiotics. In: Flavin Monooxygenases, p 67

    Chapter  Google Scholar 

  3. Ziegler DM (2002) An overview of the mechanism, substrate specificities, and structure of FMOs. Drug Metab Rev 34:503–511

    Article  CAS  Google Scholar 

  4. Hernandez D, Janmohamed A, Chandan P, Phillips IR, Shephard EA (2004) Organization and evolution of the flavin-containing monooxygenase genes of human and mouse: identification of novel gene and pseudogene clusters. Pharmacogenetics 14:117–130

    Article  CAS  Google Scholar 

  5. Hines RN, Hopp K, Franco J, Saeian K, Begun FP (2002) Alternative processing of the human FMO6 gene renders transcripts incapable of encoding a functional flavin-containing monooxygenase. Mol Pharmacol 62:320–325

    Article  CAS  Google Scholar 

  6. Hukkanen J, Dempsey D, Jacob P, Benowitz NL (2005) Effect of pregnancy on a measure of FMO3 activity. Br J Clin Pharmacol 60:224–226

    Article  CAS  Google Scholar 

  7. Chhibber-goel J, Singhal V, Parakh N, Bhargava B, Sharma A (2014) The metabolite trimethylamine-N-oxide is an emergent biomarker of human health. Curr Med Chem 1:1–18

    Google Scholar 

  8. Chen Y, Patel N, Crombie A, Scrivens JH, Murrell J (2011) Bacterial flavin-containing monooxygenase is trimethylamine monooxygenase. Proc Natl Acad Sci 108:17791–17796

    Article  CAS  Google Scholar 

  9. Lang DH, Yeung CK, Peter RM, Ibarra C, Gasser R, Itagaki K et al (1998) Isoform specificity of trimethylamine N-oxygenation by human flavin-containing monooxygenase (FMO) and P450 enzymes Selective catalysis by FMO3. Biochem Pharmacol 56:1005–1012

    Article  CAS  Google Scholar 

  10. Chhibber-Goel J, Gaur A, Singhal V, Parakh N, Bhargava B, Sharma A (2016) The complex metabolism of trimethylamine in humans: endogenous and exogenous sources. Expert Rev Mol Med 18:e8. doi:10.1017/erm.2016.6

  11. Motika MS, Zhang J, Cashman JR (2007) Flavin-containing monooxygenase 3 and human disease. Expert Opin Drug Metab Toxicol 3:831–845

    Article  CAS  Google Scholar 

  12. Craciun S, Marks J, Balskus E (2014) Characterization of choline trimethylamine-lyase expands the chemistry of glycyl radical enzymes. Am Chem Soc Biol 18:1408–1413

    Google Scholar 

  13. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr Sect D: Biol Crystallogr 66:486–501

    Article  CAS  Google Scholar 

  14. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  15. Hephard EAS (1996) Localization of human flavin-containing monooxygenase genes FMO2 and FMO5 to chromosome 1q. Biochem Genet 429:426–429

    Google Scholar 

  16. Fraaije MW, Kamerbeek NM, Van Berkel WJH, Janssen DB (2002) Identification of a Baeyer–Villiger monooxygenase sequence motif. FEBS Lett 518:43–47

    Article  CAS  Google Scholar 

  17. Zhang J, Tran Q, Lattard V, Cashman JR (2003) Deleterious mutations in the flavin-containing monooxygenase 3 (FMO3) gene causing trimethylaminuria. Pharmacogenetics 13:495–500

    Article  CAS  Google Scholar 

  18. Kubota M, Nakamoto Y, Nakayama K, Ujjin P, Satarug S, Mushiroda T et al (2002) A mutation in the flavin-containing monooxygenase 3 gene and its effects on catalytic activity for N-oxidation of trimethylamine in vitro. Drug Metab Pharmacokinet 17:207–213

    Article  CAS  Google Scholar 

  19. Dolphin CT, Janmohamed A, Smith RL, Shephard EA, Phillips IR (2000) Compound heterozygosity for missense mutations in the flavin-containing monooxygenase 3 (FMO3) gene in patients with fish-odour syndrome. Pharmacogenetics 10:799–807

    Article  CAS  Google Scholar 

  20. Park CS, Chung WG, Kang JH, Roh HK, Lee KH, Cha YN (1999) Phenotyping of flavin-containing monooxygenase using caffeine metabolism and genotyping of FMO3 gene in a Korean population. Pharmacogenetics 9:155–164

    CAS  Google Scholar 

  21. Chalmers RA, Bain MD, Michelakakis H, Zschocke J, Iles RA (2006) Diagnosis and management of trimethylaminuria (FMO3 deficiency) in children. J Inherit Metab Dis 29:162–172

    Article  CAS  Google Scholar 

  22. Shimizu M, Fujita H, Aoyama T, Yamazaki H (2006) Three novel single nucleotide polymorphisms of the FMO3 gene in a Japanese population. Drug Metab Pharmacokinet 21:245–247

    Article  CAS  Google Scholar 

  23. Krueger SK, Williams DE (2005) Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol Ther 106:357–387

    Article  CAS  Google Scholar 

  24. Larsen-Su S, Williams D (1996) Dietary indole-3-carbinol inhibits FMO activity and the expression of flavin-containing monooxygenase form 1 in rat liver and intestine. Drug Metab Dispos 24:927–931

    CAS  Google Scholar 

  25. Nace C, Genter M, Sayre L, Crofton K (1997) Effect of methimazole, an FMO substrate and competitive inhibitor, on the neurotoxicity of 3,3′-iminodipropionitrile in male rats. Fundam Appl Toxicol 37:131–140

    Article  CAS  Google Scholar 

  26. Connor DT, Roark WH, Sexton K, Sorenson RJ (2005) Thiourea and benzamide compounds, composition and methods of treating or preventing inflammatory diseases and atherosclerosis. Expert Opin Ther Pat 245–249. doi:10.1517/13543776.10.2.245

  27. Miao J, Ling AV, Manthena PV, Gearing ME, Graham MJ, Crooke RM et al (2015) Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat Commun 6:6498

    Article  CAS  Google Scholar 

  28. Khan S, Garg A, Camacho N, Van Rooyen J, Kumar Pole A, Belrhali H et al (2013) Structural analysis of malaria-parasite lysyl-tRNA synthetase provides a platform for drug development. Acta Crystallogr Sect D: Biol Crystallogr 69:785–795

    Article  CAS  Google Scholar 

  29. Sati SP, Singh SK, Kumar N, Sharma A (2002) Extra terminal residues have a profound effect on the folding and solubility of a Plasmodium falciparum sexual stage-specific protein over-expressed in Escherichia coli. Eur J Biochem 269:5259–5263

    Article  CAS  Google Scholar 

  30. Sharma A, Sharma A (2011) Fatty acid induced remodeling within the human liver fatty acid-binding protein. J Biol Chem 286:31924–31928

    Article  CAS  Google Scholar 

  31. Teresa E, Lonardo F, Fiumara A, Lombardi C, Russo P, Zuppi C, Scarano G, Musumeci S, Gianfrancesco F (2006) A spectrum of molecular variation in a cohort of Italian families with trimethylaminuria: identification of three novel mutations of the FMO3 gene. Mol Genet Metab 88:192–195

    Article  CAS  Google Scholar 

  32. Mazón Ramos A, Gil-Setas A, Berrade Zubiri S, Bandrés Echeverri T, Wevers R, Engelke U, Zschocke J (2003) Primary trimethylaminuria or fish odor syndrome. A novel mutation in the first documented case in Spain. Med Clin 120:219–221

    Article  Google Scholar 

  33. Akerman BR, Lemass H, Chow LM, Lambert DM, Greenberg C, Bibeau C et al (1999) Trimethylaminuria is caused by mutations of the FMO3 gene in a North American cohort. Mol Genet Metab 68:24–31

    Article  CAS  Google Scholar 

  34. Yeunga CK, Admanb ET, Rettie AE (2007) Functional characterization of genetic variants of human FMO3 associated with trimethylaminuria. Arch Biochem Biophys 464:251–259

    Article  Google Scholar 

  35. Shimizu M, Tomioka S, Murayama NYH (2007) Missense and nonsense mutations of the flavin-containing monooxygenase 3 gene in a Japanese cohort. Drug Metab Pharmacokinet 22:61–64

    Article  CAS  Google Scholar 

  36. Furnes B, Schlenk D (2004) Evaluation of xenobiotic N- and S-oxidation by variant flavin-containing monooxygenase 1 (FM01) enzymes. Toxicol Sci 78:196–203

    Article  CAS  Google Scholar 

  37. Basarab T, Ashton GH, Menagé HPMJ (1999) Sequence variations in the flavin-containing mono-oxygenase 3 gene (FMO3) in fish odour syndrome. Br J Dermatol 140:164–167

    Article  CAS  Google Scholar 

  38. Allerston CK, Vetti HH, Houge G, Phillips IR, Shephard EA (2009) A novel mutation in the flavin-containing monooxygenase 3 gene (FMO3) of a Norwegian family causes trimethylaminuria. Mol Genet Metab 98:198–202

    Article  CAS  Google Scholar 

  39. Yeung CK, Rettie AE (2006) Benzydamine N-oxygenation as a measure of flavin-containing monooxygenase activity. Biol Methods Mol 320:157–162

    CAS  Google Scholar 

  40. Yamazaki H, Fujita H, Gunji T, Zhang J, Kamataki T, Cashman JR et al (2007) Stop codon mutations in the flavin-containing monooxygenase 3 (FMO3) gene responsible for trimethylaminuria in a Japanese population. Mol Genet Metab 90:58–63

    Article  CAS  Google Scholar 

  41. Zschocke J, Kohlmueller D, Quak E, Meissner T, Hoffmann GF, Mayatepek E (1999) Mild trimethylaminuria caused by common variants in FMO3 gene. Lancet 354:834–835

    CAS  Google Scholar 

  42. Fujieda M, Yamazaki H, Togashi M, Saito TKT (2003) Two novel single nucleotide polymorphisms (SNPs) of the FMO3 gene in Japanese. Drug Metab Pharmacokinet 18:333–335

    Article  Google Scholar 

  43. Preeti G, Ubriani R, Kim J (2002) Identification of a novel R223Q missense mutation in the flavin-containing monooxygenase 3 gene in trimethylaminuria. J Invest Dermatol 119:244

    Google Scholar 

  44. Cashman JR (2002) Human flavin-containing monooxygenase (form 3): polymorphisms and variations in chemical metabolism. Pharmacogenomics 3:325–339

    Article  CAS  Google Scholar 

  45. Furnes B, Feng J, Sommer SS, Schlenk D (2003) Identification of novel variants of the flavin-containing monooxygenase gene family in African Americans. Drug Metab Dispos 31:187–193

    Article  CAS  Google Scholar 

  46. Koukouritaki S, Poch M, Henderson M, Siddens L, Krueger S, VanDyke J et al (2007) Identification and functional analysis of common human flavin-containing monooxygenase 3 genetic variants. J Pharmacol Exp Ther 320:266–273

    Article  CAS  Google Scholar 

  47. Shimizu M, Allerston C, Shephard E, Yamazaki H, Phillips I (2014) Relationships between flavin-containing mono-oxygenase 3 (FMO3) genotype and trimethylaminuria phenotype in a Japanese population. Br J Clin Pharmacol 77:839–851

    Article  CAS  Google Scholar 

  48. D’Angelo R, Esposito T, Calabr M, Rinaldi C, Robledo R, Varriale B et al (2013) FMO3 allelic variants in Sicilian and Sardinian populations: trimethylaminuria and absence of fish-like body odor. Gene 515:410–415

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JC Bose fellowship to Amit P. Sharma. One of the authors is supported by CSIR fellowship. The authors thank CB Indus, I Pantig and AG for constant encouragement. All the authors reviewed and approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest with the contents of this article.

Additional information

Significance statement The human flavin monooxygenase 3 enzyme is linked to numerous diseases via its product trimethylamine-N-oxide. In the present study, the authors provide insights that reinforce the significance of understanding hFMO3 mutations and their effect on enzymatic activity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhibber-Goel, J., Singhal, V., Gaur, A. et al. Structure–Function Analysis of Liver Flavin Monooxygenase 3 that Drives Trimethylaminuria in Humans. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 88, 1681–1690 (2018). https://doi.org/10.1007/s40011-017-0913-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-017-0913-5

Keywords

Navigation