Skip to main content
Log in

Synthesis and Antibacterial Activity of Novel N-Methyl Pyrrolidine Dendrimers via [3+2] Cycloaddition

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

One-pot synthesis of novel N-methyl pyrrolidine dendrimers has been accomplished in good yield via a facile [3+2] cycloaddition of azomethine ylide with chalcone moiety of the dendrimer as a dipolarophile. All the pyrrolidine dendrimers exhibited moderate and comparable antibacterial activity as that of the standard viz., chloramphenicol against Bacillus subtilis, E. coli, Klebsiella pneumoniae and species of Streptococcus by agar well diffusion method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 2

Similar content being viewed by others

References

  1. Gilat SL, Adronov A, Fréchet JMJ (1999) Light harvesting and energy transfer in novel convergently constructed dendrimers. Angew Chem Int Ed 38:27–1422

    Article  Google Scholar 

  2. Adronov A, Fréchet JMJ (2000) Light harvesting dendrimers. Chem Commun 18:1701–1710

    Article  Google Scholar 

  3. Kleij AW, Gossage RA, Gebbink RJMK, Brinkmann N, Reijerse EJ, Kragl U, Luts M, Spek AL, Koten GV (2000) A dendritic effect in homogeneous catalysis with carbosilane-supported arylnickel(II) Catalysts: observation of active-site proximity effects in atom-transfer radical addition. J Am Chem Soc 122:12112–12124

    Article  Google Scholar 

  4. Mager M, Becke S, Windisch H, Denninger U (2001) Noncoordinating dendrimer polyanions: cocatalysts for the metallocene17 catalyzed olefin polymerization. Angew Chem Int Ed 40:1898–1902

    Article  Google Scholar 

  5. Hahn U, Gorka M, Vögtle F, Vicinelli V, Ceroni P, Maestri M, Balsani V (2002) Light-harvesting dendrimers: efficient intra and intermolecular energy-transfer processes in a species containing 65 chromophoric groups of four different types. Angew Chem Int Ed 41:3595–3598

    Article  Google Scholar 

  6. Rajakumar P, Ganesan K, Jayavelu S, Murugesan K (2005) Synthesis and bactericidal efficacy of novel dendrimers. Synlett 7:1121–1124

    Article  Google Scholar 

  7. Gillies ER, Fréchet JMJ (2002) Designing macromolecules for therapeutic applications: polyester DendrimersPoly(ethylene oxide) ‘‘Bow-Tie’’ hybrids with tunable molecular weight and architecture. J Am Chem Soc 124:14137–14146

    Article  Google Scholar 

  8. Padilla De Jesus OL, Ihre HR, Gagne L, Fréchet JMJ, Szoka FC Jr (2002) Polyester dendritic systems for drug delivery applications: inVitro and in vivo evaluation. Bioconjugate Chem 13:453–461

    Article  Google Scholar 

  9. Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG (2003) Bioconjugation by copper (I)-catalyzed azide-alkyne [3+2] cycloaddition. J Am Chem Soc 125:31923193

    Google Scholar 

  10. Bureley GA, Gierlich J, Mofid MR, Nir H, Tal S, Eichen Y, Carell TJ (2006) Directed DNA metallization. J Am Chem Soc 128:1398–1399

    Article  Google Scholar 

  11. Fuchs S, Otto H, Jehle S, Henklein P, Schlüter AD (2005) Fluorescent dendrimers with a peptide cathepsin B cleavage site for drug delivery applications. Chem Comm 1830–1832

  12. Majoros IJ, Myc A, Thomas T, Mehta CB, Baker JR Jr (2006) PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 7:572–579

    Article  Google Scholar 

  13. Cloninger MJ (2002) Biological applications of dendrimers. Curr Opin Chem 18 Biol 6:742–748

    Article  Google Scholar 

  14. Boas U, Heegaard PMH (2004) Dendrimers in drug research. Chem Soc Rev 33:43–63

    Article  Google Scholar 

  15. Shaunak S, Thomas S, Gianasi E, Godwin A, Jones E (2004) Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nat Biotechnol 22:84–977

    Google Scholar 

  16. Zhang Q, Ning Z, Yan Y, Qian S, Tian H (2008) Photochromic spiropyran dendrimers:‘Click’ syntheses, characterization, and optical properties. Macromol Rapid Commun 29:193–201

    Article  Google Scholar 

  17. Goodwin AP, Lam SS, Frechet JMJ (2007) Rapid, efficient synthesis of heterobifunctional biodegradable dendrimers. J Am Chem Soc 129:6994–6995

    Article  Google Scholar 

  18. Antoni P, Hed Y, Nordberg A, Nystrom D, von Holst H, Hult A, Malkoch M (2009) Bifunctional dendrimers: from robust synthesis and accelerated one-pot postfunctionalization strategy to potential applications. Angew Chem Int Ed 48:2126–2130

    Article  Google Scholar 

  19. Navath RS, Menjoge AR, Wang B, Romero R, Kannan S, Kannan RM (2010) Amino acid-functionalized dendrimers with heterobifunctional chemoselective peripheral groups for drug delivery applications. Biomacromolecules 11:1544–1563

    Article  Google Scholar 

  20. Chavan P, Mane AS, Shingare MS (2001) ChemInform Abstract: synthesis of New O, O-Dialkyl-O-coumarinophosphorothioates and their pesticidal bioassay against helicoverpa armigera. Indian J Chem 40B:339–341

    Google Scholar 

  21. Rajakumar P, Raja S, Thirunarayanan A (2010) A facile synthesis of novel pyrrolidine dendrimers by terminal group modification through 1,3-dipolar cycloaddition reaction. Synlett 11:1669–1673

    Article  Google Scholar 

  22. Rajakumar P, Raja S (2009) Synthesis and characterization of some novel dendritic architectures bearing chalcone at the periphery through click approach 19. Synth Commun 39:3888–3897

    Article  Google Scholar 

  23. Rajakumar P, Anandhan R (2011) Synthesis and in-vitro anti-inflammatory activity of novel glycodendrimers with benzene 1,3,5 carboxamide core and triazole as branching unit. Eur J Med Chem 46:4687–4693

    Article  Google Scholar 

  24. Tsuge O, Kanemasa S (1989) Recent Advances in Azomethine Ylide Chemistry. Advances in heterocyclic chemistry; Katritzky AR Ed. Academic Press: San Diego 45:231

  25. Padwa A (1991) Intramolecular 1,3-dipolar cycloaddition. In: Trost BM, Fleming I (eds) Comprehensive organic synthesis. Pergamon Press, Oxford, pp 1069–1109

    Chapter  Google Scholar 

  26. Grigg R, Sridharan V (1993) In: Curran DP (ed) Advances in Cycloaddition, vol 3. Jai Press, London, p 161

  27. Boger DL (1983) Diels-alder reactions of azadiens. Tetrahedron 39:2869

    Article  Google Scholar 

  28. Dessimoni G, Tacconi G (1975) Heterodiene syntheses with á, â,-unsaturated carbonyl compounds. Chem Rev 75:651–692

    Article  Google Scholar 

  29. Polyak F, Lubell WD (2001) Mimicry of peptide backbone geometry and heteroatomic side-chain functionality: synthesis of enantiopure indolizidin-2-one amino acids possessing alcohol, acid, and azide functional groups. J Org Chem 66:1171–1180

    Article  Google Scholar 

  30. Feng Z, Lubell WD (2001) Synthesis of enantiopure 7-[3-Azidopropyl] indolizidin-2-one amino acid. A constrained mimic of the peptide backbone geometry and heteroatomic side-chain functionality of the Ala-Lys dipeptide. J Org Chem 66:1181–1185

    Article  Google Scholar 

  31. Kolodziej SA, Nikiforovich GV, Skeean R, Lignon MF, Martinez J, Marshall GR (1995) Ac-[3- and 4-Alkylthioproline31]-CCK4 analogs: synthesis and implications for the CCK-B receptor-bound conformation. J Med Chem 38:137–149

    Article  Google Scholar 

  32. Boyanova L, Gergova G, Nikolov R, Derejian S, Lazarova E, Katsarov N, Mitov I, Krastev Z (2005) Activity of bulgarialn propolis against 94 Helicobacter pylori strains in vitro by agar well diffusion, agar dilution and disc diffusion methods. J Med Microbiol 54:481–483

    Article  Google Scholar 

  33. Nyerges M, Ballás L, Kádas I, Bitter I, Kovesdi I, To ke L (1995) trans-3-Aryl-4-nitro-pyrrolidines via 1,3-dipolar cycioaddition of nonstabilized azomethine ylide to â -nitro styrenes. Tetrahedron 51:6783–6788

    Article  Google Scholar 

  34. Rajakumar P, Raja S (2008) Synthesis, optical and thermal studies of dendritic architectures with chalcone surface groups. Tetrahedron Lett 49:6539–6542

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank CSIR, New Delhi, for financial assistance and DST-FIST for providing NMR facilities to the department and also grateful to the department of biotechnology, Vels University, Chennai, India. For anti bacterial studies. AT thanks CSIR-UGC for fellowship in the form of SRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perumal Rajakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajakumar, P., Thirunarayanan, A. & Raja, S. Synthesis and Antibacterial Activity of Novel N-Methyl Pyrrolidine Dendrimers via [3+2] Cycloaddition. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 84, 371–379 (2014). https://doi.org/10.1007/s40010-013-0120-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-013-0120-6

Keywords

Navigation