Skip to main content

Advertisement

Log in

Pattern recognition receptors and their nano-adjuvants for cancer immunotherapy

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Background

Pattern recognition receptors (PRRs) are crucial immune modulators that orchestrate innate and adaptive immune systems for the regulation of inflammatory responses. Several PRR families and their ligands associated with immune modulation have been identified, which promoted the development of natural and synthetic PRR agonistic ligands as adjuvants in immunotherapy applications. However, conventional adjuvants are mainly based on small molecules, peptides, lipids, and oligonucleotides, which suffer from unfavorable drug-like properties for in vivo applications, including vulnerability to biodegradation, undesirable pharmacokinetic profiles, and poor cellular uptake. Nanoparticle formulation is a promising approach for addressing the issues with conventional adjuvants.

Area covered

This review aims to provide a broad understanding of nano-adjuvants utilized in cancer immunotherapy. For this purpose, we introduce the background, summarize the current knowledge on PRRs and their ligands for some representative classes, and highlight various nanoparticle platforms that are utilized to construct nano-adjuvants in cancer immunotherapy. We also discuss some design considerations for optimal nano-adjuvant formulations with potent adjuvant activity and desired in vivo performance.

Expert opinion

Nanoparticles provide a robust and versatile platform to shape conventional adjuvants into more drug-like formulations, and the preclinical studies and clinical trials have demonstrated their potential in cancer immunotherapy. The emergence of cancer immunotherapy in clinics will fuel continuous efforts toward highly efficient nano-adjuvant systems that can strongly boost the antitumor immune responses in cancer immunotherapy. The accumulated knowledge gained through the progress will provide important insights into optimal nano-adjuvant formulations and potentially guide their clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) in Molecular Biology of the Cell. 4th edition

  • Albin TJ, Tom JK, Manna S, Gilkes AP, Stetkevich SA, Katz BB, Supnet M, Felgner J, Jain A, Nakajima R, Jasinskas A, Zlotnik A, Pearlman E, Davies DH, Felgner PL, Burkhardt AM, Esser-Kahn AP (2019) Linked toll-like receptor triagonists stimulate distinct, combination-dependent Innate Immune responses. ACS Cent Sci 5:1137–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen IC, Tekippe EM, Woodford R-MT, Uronis JM, Holl EK, Rogers AB, Herfarth HH, Jobin C, Ting JP-Y (2010) The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med 207:1045–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen IC, Wilson JE, Schneider M, Lich JD, Roberts RA, Arthur JC, Woodford R-MT, Davis BK, Uronis JM, Herfarth HH (2012) NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-κB signaling. Immunity 36:742–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amarante-Mendes GP, Adjemian S, Branco LM, Zanetti LC, Weinlich R, Bortoluci KR (2018) Pattern recognition receptors and the host cell death molecular machinery. Front Immunol 9

  • Andrade WA, Souza Mdo C, Ramos-Martinez E, Nagpal K, Dutra MS, Melo MB, Bartholomeu DC, Ghosh S, Golenbock DT, Gazzinelli RT (2013) Combined action of nucleic acid-sensing toll-like receptors and TLR11/TLR12 heterodimers imparts resistance to Toxoplasma gondii in mice. Cell Host Microbe 13:42–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anwar MA, Shah M, Kim J, Choi S (2019) Recent clinical trends in toll-like receptor targeting therapeutics. Med Res Rev 39:1053–1090

    Article  CAS  PubMed  Google Scholar 

  • Azuma M, Takeda Y, Nakajima H, Sugiyama H, Ebihara T, Oshiumi H, Matsumoto M, Seya T (2016) Biphasic function of TLR3 adjuvant on tumor and spleen dendritic cells promotes tumor T cell infiltration and regression in a vaccine therapy. Oncoimmunology 5:e1188244

    Article  PubMed  PubMed Central  Google Scholar 

  • Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    Article  CAS  PubMed  Google Scholar 

  • Bartneck M, Keul HA, Singh S, Czaja K, Bornemann J, Bockstaller M, Moeller M, Zwadlo-Klarwasser G, Groll J (2010) Rapid uptake of gold nanorods by primary human blood phagocytes and immunomodulatory effects of surface chemistry. ACS Nano 4:3073–3086

    Article  CAS  PubMed  Google Scholar 

  • Barton GM, Medzhitov R (2003) Toll-like receptor signaling pathways. Sci (New York N Y) 300:1524–1525

    Article  CAS  Google Scholar 

  • Bayyurt B, Tincer G, Almacioglu K, Alpdundar E, Gursel M, Gursel I (2017) Encapsulation of two different TLR ligands into liposomes confer protective immunity and prevent tumor development. J Controlled Release: Official J Controlled Release Soc 247:134–144

    Article  CAS  Google Scholar 

  • Belling JN, Jackman JA, Yorulmaz Avsar S, Park JH, Wang Y, Potroz MG, Ferhan AR, Weiss PS, Cho NJ (2016) Stealth Immune Properties of Graphene Oxide enabled by surface-bound complement factor H. ACS Nano 10:10161–10172

    Article  CAS  PubMed  Google Scholar 

  • Besch R, Poeck H, Hohenauer T, Senft D, Häcker G, Berking C, Hornung V, Endres S, Ruzicka T, Rothenfusser S (2009) Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon–independent apoptosis in human melanoma cells. J Clin Investig 119:2399–2411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhoopathi P, Quinn BA, Gui Q, Shen X-N, Grossman SR, Das SK, Sarkar D, Fisher PB, Emdad L (2014) Pancreatic cancer–specific cell death induced in vivo by cytoplasmic-delivered polyinosine–polycytidylic acid. Cancer Res 74:6224–6235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boks MA, Bruijns SCM, Ambrosini M, Kalay H, Van Bloois L, Storm G, Gruijl TD, Van Kooyk Y (2015) In situ delivery of Tumor Antigen– and adjuvant-loaded liposomes boosts Antigen-Specific T-Cell responses by human dermal dendritic cells. J Invest Dermatology 135:2697–2704

    Article  CAS  Google Scholar 

  • Brackett CM, Kojouharov B, Veith J, Greene KF, Burdelya LG, Gollnick SO, Abrams SI, Gudkov AV (2016) Toll-like receptor-5 agonist, entolimod, suppresses metastasis and induces immunity by stimulating an NK-dendritic-CD8 + T-cell axis. Proc Natl Acad Sci USA 113:E874–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown GD (2006) Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol 6:33–43

    Article  CAS  PubMed  Google Scholar 

  • Camacho AI, Da Costa Martins R, Tamayo I, De Souza J, Lasarte JJ, Mansilla C, Esparza I, Irache JM, Gamazo C (2011) Poly(methyl vinyl ether-co-maleic anhydride) nanoparticles as innate immune system activators. Vaccine 29:7130–7135

    Article  CAS  PubMed  Google Scholar 

  • Cao P, Han FY, Grøndahl L, Xu ZP, Li L (2020) Enhanced oral vaccine efficacy of polysaccharide-coated calcium phosphate nanoparticles. ACS Omega 5:18185–18197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caramalho I, Lopes-Carvalho T, Ostler D, Zelenay S, Haury M, Demengeot J (2003) Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J Exp Med 197:403–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casals C, García-Fojeda B, Minutti CM (2019) Soluble defense collagens: sweeping up immune threats. Mol Immunol 112:291–304

    Article  CAS  PubMed  Google Scholar 

  • Cen X, Zhu G, Yang J, Yang J, Guo J, Jin J, Nandakumar KS, Yang W, Yin H, Liu S, Cheng K (2019) TLR1/2 specific small-molecule agonist suppresses Leukemia Cancer Cell Growth by stimulating cytotoxic T lymphocytes. Adv Sci (Weinheim Baden-Wurttemberg Germany) 6:1802042

    Google Scholar 

  • Chandra D, Quispe-Tintaya W, Jahangir A, Asafu-Adjei D, Ramos I, Sintim HO, Zhou J, Hayakawa Y, Karaolis DK, Gravekamp C (2014) STING ligand c-di-GMP improves Cancer vaccination against metastatic breast Cancerc-di-GMP improves vaccination against breast Cancer. Cancer Immunol Res 2:901–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan L-P, Wang L-F, Chiang F-Y, Lee K-W, Kuo P-L, Liang C-H (2016) IL-8 promotes HNSCC progression on CXCR1/2-meidated NOD1/RIP2 signaling pathway. Oncotarget 7:61820

    Article  PubMed  PubMed Central  Google Scholar 

  • Chatzikleanthous D, O’hagan DT, Adamo R (2021) Lipid-based nanoparticles for delivery of Vaccine Adjuvants and Antigens: toward Multicomponent Vaccines. Mol Pharm 18:2867–2888

    Article  CAS  PubMed  Google Scholar 

  • Chen GY, Shaw MH, Redondo G, Núñez G (2008) The innate immune receptor Nod1 protects the intestine from inflammation-induced tumorigenesis. Cancer Res 68:10060–10067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z (2016) Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat Commun 7:13193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Zhang Y, Fu Y (2022) The critical role of toll-like receptor-mediated signaling in cancer immunotherapy. Med Drug Discovery 14:100122

    Article  CAS  Google Scholar 

  • Cheng K, Kang Q, Zhao X (2020) Biogenic nanoparticles as immunomodulator for tumor treatment. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology 12:e1646

  • Chiba S, Ikushima H, Ueki H, Yanai H, Kimura Y, Hangai S, Nishio J, Negishi H, Tamura T, Saijo S, Iwakura Y, Taniguchi T (2014) Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses. eLife 3:e04177

    Article  PubMed  PubMed Central  Google Scholar 

  • Chuenchor W, Jin T, Ravilious G, Xiao TS (2014) Structures of pattern recognition receptors reveal molecular mechanisms of autoinhibition, ligand recognition and oligomerization. Curr Opin Immunol 26:14–20

    Article  CAS  PubMed  Google Scholar 

  • Clements CJ, Griffiths E (2002) The global impact of vaccines containing aluminium adjuvants. Vaccine 20(Suppl 3):S24–33

    Article  PubMed  Google Scholar 

  • Coccia M, Collignon C, Hervé C, Chalon A, Welsby I, Detienne S, Van Helden MJ, Dutta S, Genito CJ, Waters NC, Deun KV, Smilde AK, Berg R, Franco D, Bourguignon P, Morel S, Garçon N, Lambrecht BN, Goriely S, Most RV, Didierlaurent AM (2017) Cellular and molecular synergy in AS01-adjuvanted vaccines results in an early IFNγ response promoting vaccine immunogenicity. NPJ Vaccines 2:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Conforti-Andreoni C, Beretta O, Licandro G, Qian HL, Urbano M, Vitulli F, Ricciardi‐Castagnoli P, Mortellaro A (2010) Synergism of NOD2 and NLRP3 activators promotes a unique transcriptional profile in murine dendritic cells. J Leukoc Biol 88:1207–1216

    Article  CAS  PubMed  Google Scholar 

  • Conlon J, Burdette DL, Sharma S, Bhat N, Thompson M, Jiang Z, Rathinam VA, Monks B, Jin T, Xiao TS, Vogel SN, Vance RE, Fitzgerald KA (2013) Mouse, but not human STING, binds and signals in response to the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid. J Immunol (Baltimore Md : 1950) 190:5216–5225

    Article  CAS  Google Scholar 

  • Corrales L, Glickman LH, Mcwhirter SM, Kanne DB, Sivick KE, Katibah GE, Woo SR, Lemmens E, Banda T, Leong JJ, Metchette K, Dubensky TW Jr, Gajewski TF (2015) Direct activation of STING in the Tumor Microenvironment leads to potent and systemic Tumor regression and immunity. Cell Rep 11:1018–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couturier-Maillard A, Secher T, Rehman A, Normand S, De Arcangelis A, Haesler R, Huot L, Grandjean T, Bressenot A, Delanoye-Crespin A (2013) NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer. J Clin Investig 123

  • Cui J, De Rose R, Best JP, Johnston AP, Alcantara S, Liang K, Such GK, Kent SJ, Caruso F (2013) Mechanically tunable, self-adjuvanting nanoengineered polypeptide particles. Advanced materials (Deerfield Beach. Fla) 25:3468–3472

    CAS  Google Scholar 

  • Damiano JS, Oliveira V, Welsh K, Reed JC (2004) Heterotypic interactions among NACHT domains: implications for regulation of innate immune responses. Biochem J 381:213–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Silva CA, Pochard P, Lee CG, Elias JA (2010) Chitin particles are multifaceted immune adjuvants. Am J Respir Crit Care Med 182:1482–1491

    Article  PubMed  PubMed Central  Google Scholar 

  • Da Silva Correia J, Miranda Y, Austin-Brown N, Hsu J, Mathison J, Xiang R, Zhou H, Li Q, Han J, Ulevitch RJ (2006) Nod1-dependent control of tumor growth. Proceedings of the National Academy of Sciences 103:1840–1845

  • De Faria PC, Dos Santos LI, Coelho JP, Ribeiro HB, Pimenta MA, Ladeira LO, Gomes DA, Furtado CA, Gazzinelli RT (2014) Oxidized multiwalled carbon nanotubes as antigen delivery system to promote superior CD8(+) T cell response and protection against cancer. Nano Lett 14:5458–5470

    Article  CAS  PubMed  Google Scholar 

  • Didierlaurent AM, Morel S, Lockman L, Giannini SL, Bisteau M, Carlsen H, Kielland A, Vosters O, Vanderheyde N, Schiavetti F, Larocque D, Van Mechelen M, Garçon N (2009) AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. Journal of immunology (Baltimore, Md.: 1950) 183:6186–6197

  • Didierlaurent AM, Laupèze B, Di Pasquale A, Hergli N, Collignon C, Garçon N (2017) Adjuvant system AS01: helping to overcome the challenges of modern vaccines. Expert Rev Vaccines 16:55–63

    Article  CAS  PubMed  Google Scholar 

  • Diebold SS, Kaisho T, Hemmi H, Akira S, Reis E, Sousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA, vol 303. Science, New York, N.Y., pp 1529–1531

    Google Scholar 

  • Di Lorenzo A, Bolli E, Tarone L, Cavallo F, Conti L (2020) Toll-Like Receptor 2 at the Crossroad between Cancer Cells, the Immune System, and the Microbiota. International journal of molecular sciences 21

  • Ding B, Shao S, Yu C, Teng B, Wang M, Cheng Z, Wong KL, Ma P, Lin J (2018) Large-Pore Mesoporous-Silica-Coated Upconversion Nanoparticles as Multifunctional Immunoadjuvants with Ultrahigh Photosensitizer and Antigen Loading Efficiency for Improved Cancer Photodynamic Immunotherapy. Advanced materials (Deerfield Beach, Fla.) 30:e1802479

  • Ding FX, Wang F, Lu YM, Li K, Wang KH, He XW, Sun SH (2009) Multiepitope peptide-loaded virus-like particles as a vaccine against hepatitis B virus-related hepatocellular carcinoma. Hepatology (Baltimore MD) 49:1492–1502

    Article  CAS  PubMed  Google Scholar 

  • Domingo GJ, Chauhan HJ, Lessard IA, Fuller C, Perham RN (1999) Self-assembly and catalytic activity of the pyruvate dehydrogenase multienzyme complex from Bacillus stearothermophilus. Eur J Biochem 266:1136–1146

    Article  CAS  PubMed  Google Scholar 

  • Drobits B, Holcmann M, Amberg N, Swiecki M, Grundtner R, Hammer M, Colonna M, Sibilia M (2012) Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells. J Clin Invest 122:575–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan S, Xu X, Wang J, Huang L, Peng J, Yu T, Zhou Y, Cheng K, Liu S (2021) TLR1/2 agonist enhances reversal of HIV-1 latency and promotes NK Cell-Induced suppression of HIV-1-Infected autologous CD4(+) T cells. J Virol 95:e0081621

    Article  PubMed  Google Scholar 

  • Durán-Lobato M, Carrillo-Conde B, Khairandish Y, Peppas NA (2014) Surface-modified P(HEMA-co-MAA) nanogel carriers for oral vaccine delivery: design, characterization, and in vitro targeting evaluation. Biomacromolecules 15:2725–2734

    Article  PubMed  PubMed Central  Google Scholar 

  • Dziarski R, Jin YP, Gupta D (1996) Differential activation of extracellular signal-regulated kinase (ERK) 1, ERK2, p38, and c-Jun NH2-terminal kinase mitogen-activated protein kinases by bacterial peptidoglycan. J Infect Dis 174:777–785

    Article  CAS  PubMed  Google Scholar 

  • El Andaloussi A, Sonabend AM, Han Y, Lesniak MS (2006) Stimulation of TLR9 with CpG ODN enhances apoptosis of glioma and prolongs the survival of mice with experimental brain tumors. Glia 54:526–535

    Article  PubMed  Google Scholar 

  • Elion DL, Jacobson ME, Hicks DJ, Rahman B, Sanchez V, Gonzales-Ericsson PI, Fedorova O, Pyle AM, Wilson JT, Cook RS (2018) Therapeutically active RIG-I agonist induces immunogenic Tumor Cell killing in breast cancers. Cancer Res 78:6183–6195

    Article  CAS  PubMed  Google Scholar 

  • Fan L, Zhou P, Hong Q, Chen AX, Liu GY, Yu KD, Shao ZM (2019) Toll-like receptor 3 acts as a suppressor gene in breast cancer initiation and progression: a two-stage association study and functional investigation. Oncoimmunology 8:e1593801

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang RH, Kroll AV, Zhang L (2015) Nanoparticle-based manipulation of Antigen-Presenting cells for Cancer Immunotherapy. Small 11:5483–5496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang RH, Kroll AV, Gao W, Zhang L (2018) Cell Membrane Coating Nanotechnology. Advanced materials (Deerfield Beach, Fla.) 30:e1706759

  • Fitzgerald KA, Kagan JC (2020) Toll-like receptors and the control of immunity. Cell 180:1044–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foit L, Thaxton CS (2016) Synthetic high-density lipoprotein-like nanoparticles potently inhibit cell signaling and production of inflammatory mediators induced by lipopolysaccharide binding toll-like receptor 4. Biomaterials 100:67–75

    Article  CAS  PubMed  Google Scholar 

  • Frank MJ, Khodadoust MS, Czerwinski DK, Haabeth OaW, Chu MP, Miklos DB, Advani RH, Alizadeh AA, Gupta NK, Maeda LS, Reddy SA, Laport GG, Meyer EH, Negrin RS, Rezvani AR, Weng WK, Sheehan K, Faham M, Okada A, Moore AH, Phillips DL, Wapnir IL, Brody JD, Levy R (2020) Autologous tumor cell vaccine induces antitumor T cell immune responses in patients with mantle cell lymphoma: a phase I/II trial. J Exp Med 217

  • Franzoni G, Anfossi A, De Ciucis CG, Mecocci S, Carta T, Dei Giudici S, Fruscione F, Zinellu S, Vito G, Graham SP, Oggiano A, Chessa B, Razzuoli E (2021) Targeting toll-like receptor 2: polarization of Porcine Macrophages by a Mycoplasma-Derived Pam2cys Lipopeptide. Vaccines 9.

  • Furukawa A, Kamishikiryo J, Mori D, Toyonaga K, Okabe Y, Toji A, Kanda R, Miyake Y, Ose T, Yamasaki S, Maenaka K (2013) Structural analysis for glycolipid recognition by the C-type lectins Mincle and MCL. Proc Natl Acad Sci USA 110:17438–17443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fytianos K, Chortarea S, Rodriguez-Lorenzo L, Blank F, Von Garnier C, Petri-Fink A, Rothen-Rutishauser B (2017) Aerosol Delivery of Functionalized Gold Nanoparticles Target and activate dendritic cells in a 3D Lung Cellular Model. ACS Nano 11:375–383

    Article  CAS  PubMed  Google Scholar 

  • Garçon N, Van Mechelen M (2011) Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev Vaccines 10:471–486

    Article  PubMed  Google Scholar 

  • Garrett WS, Chen L-M, Kroschewski R, Ebersold M, Turley S, Trombetta S, Galán JE, Mellman I (2000) Developmental control of endocytosis in dendritic cells by Cdc42. Cell 102:325–334

    Article  CAS  PubMed  Google Scholar 

  • Gause KT, Wheatley AK, Cui J, Yan Y, Kent SJ, Caruso F (2017) Immunological principles guiding the Rational design of particles for Vaccine Delivery. ACS Nano 11:54–68

    Article  CAS  PubMed  Google Scholar 

  • Geijtenbeek TB, Gringhuis SI (2009) Signalling through C-type lectin receptors: shaping immune responses. Nat Rev Immunol 9:465–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Getts DR, Shea LD, Miller SD, King NJ (2015) Harnessing nanoparticles for immune modulation. Trends Immunol 36:419–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghaffar KA, Giddam AK, Zaman M, Skwarczynski M, Toth I (2014) Liposomes as nanovaccine delivery systems. Curr Top Med Chem 14:1194–1208

    Article  PubMed  Google Scholar 

  • Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, Vermaelen K, Panaretakis T, Mignot G, Ullrich E, Perfettini JL, Schlemmer F, Tasdemir E, Uhl M, Génin P, Civas A, Ryffel B, Kanellopoulos J, Tschopp J, André F, Lidereau R, Mclaughlin NM, Haynes NM, Smyth MJ, Kroemer G, Zitvogel L (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 15:1170–1178

    Article  CAS  PubMed  Google Scholar 

  • Goubau D, Deddouche S, Sousa E CR (2013) Cytosolic sensing of viruses. Immunity 38:855–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gowen BB, Wong MH, Jung KH, Sanders AB, Mitchell WM, Alexopoulou L, Flavell RA, Sidwell RW (2007) TLR3 is essential for the induction of protective immunity against Punta Toro Virus infection by the double-stranded RNA (dsRNA), poly(I:C12U), but not Poly(I:C): differential recognition of synthetic dsRNA molecules. Journal of immunology (Baltimore, Md.: 1950) 178:5200–5208

  • Guo L, Yan DD, Yang D, Li Y, Wang X, Zalewski O, Yan B, Lu W (2014) Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles. ACS Nano 8:5670–5681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guy B (2007) The perfect mix: recent progress in adjuvant research. Nat Rev Microbiol 5:505–517

    Article  CAS  PubMed  Google Scholar 

  • Hafner AM, Corthésy B, Merkle HP (2013) Particulate formulations for the delivery of poly(I:C) as vaccine adjuvant. Adv Drug Deliv Rev 65:1386–1399

    Article  CAS  PubMed  Google Scholar 

  • Hamid O, Solomon JC, Scotland R, Garcia M, Sian S, Ye W, Groshen SL, Weber JS (2007) Alum with interleukin-12 augments immunity to a melanoma peptide vaccine: correlation with time to relapse in patients with resected high-risk disease. Clin cancer Research: Official J Am Association Cancer Res 13:215–222

    Article  CAS  Google Scholar 

  • Han S, Wang W, Wang S, Yang T, Zhang G, Wang D, Ju R, Lu Y, Wang H, Wang L (2021) Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes. Theranostics 11:2892–2916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ, Greenberg RA (2017) Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548:466–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Y, Hara H, Núñez G (2016) Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci 41:1012–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidegger S, Kreppel D, Bscheider M, Stritzke F, Nedelko T, Wintges A, Bek S, Fischer JC, Graalmann T, Kalinke U, Bassermann F, Haas T, Poeck H (2019) RIG-I activating immunostimulatory RNA boosts the efficacy of anticancer vaccines and synergizes with immune checkpoint blockade. EBioMedicine 41:146–155

    Article  PubMed  PubMed Central  Google Scholar 

  • Hooy RM, Massaccesi G, Rousseau KE, Chattergoon MA, Sohn J (2020) Allosteric coupling between Mn2 + and dsDNA controls the catalytic efficiency and fidelity of cGAS. Nucleic Acids Res 48:4435–4447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horning KJ, Caito SW, Tipps KG, Bowman AB, Aschner M (2015) Manganese is essential for neuronal health. Annu Rev Nutr 35:71–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornung V, Latz E (2010) Intracellular DNA recognition. Nat Rev Immunol 10:123–130

    Article  CAS  PubMed  Google Scholar 

  • Hu HG, Li YM (2020) Emerging adjuvants for Cancer Immunotherapy. Front Chem 8:601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu HG, Wu JJ, Zhang BD, Li WH, Li YM (2020) Pam(3)CSK(4)-CDG(SF) augments Antitumor Immunotherapy by synergistically activating TLR1/2 and STING. Bioconjug Chem 31:2499–2503

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Zhao J, Li H, He K-L, Chen Y, Mayer L, Unkeless JC, Xiong H (2005) Toll-like receptors on Tumor cells facilitate evasion of Immune Surveillance. Cancer Res 65:5009–5014

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Zhao J, Unkeless JC, Feng ZH, Xiong H (2008) TLR signaling by tumor and immune cells: a double-edged sword. Oncogene 27:218–224

    Article  CAS  PubMed  Google Scholar 

  • Huber B, Schellenbacher C, Jindra C, Fink D, Shafti-Keramat S, Kirnbauer R (2015) A chimeric 18L1-45RG1 virus-like particle vaccine cross-protects against oncogenic alpha-7 human papillomavirus types. PLoS ONE 10:e0120152

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibrahim HM, Mohamed AH, Salem ML, Osman GY, Morsi DS (2020) Anti-neoplastic and immunomodulatory potency of co-treatment based on bovine lactoferrin and/or muramyl dipeptide in tumor-bearing mice. Toxicol Res 9:137–147

    Article  Google Scholar 

  • Ignatz-Hoover JJ, Wang H, Moreton SA, Chakrabarti A, Agarwal MK, Sun K, Gupta K, Wald DN (2015) The role of TLR8 signaling in acute myeloid leukemia differentiation. Leukemia 29:918–926

    Article  CAS  PubMed  Google Scholar 

  • Inao T, Harashima N, Monma H, Okano S, Itakura M, Tanaka T, Tajima Y, Harada M (2012) Antitumor effects of cytoplasmic delivery of an innate adjuvant receptor ligand, poly(I:C), on human breast cancer. Breast Cancer Res Treat 134:89–100

    Article  CAS  PubMed  Google Scholar 

  • Inohara N, Ogura Y, Fontalba A, Gutierrez O, Pons F, Crespo J, Fukase K, Inamura S, Kusumoto S, Hashimoto M, Foster SJ, Moran AP, Fernandez-Luna JL, Nuñez G (2003) Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn’s disease. J Biol Chem 278:5509–5512

    Article  CAS  PubMed  Google Scholar 

  • Ishii KJ, Coban C, Kato H, Takahashi K, Torii Y, Takeshita F, Ludwig H, Sutter G, Suzuki K, Hemmi H (2006) A toll-like receptor–independent antiviral response induced by double-stranded B-form DNA. Nat Immunol 7:40–48

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995

    Article  CAS  PubMed  Google Scholar 

  • Javaid N, Choi S (2020) Toll-like receptors from the perspective of cancer treatment. Cancers 12:297

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang HY, Najmeh S, Martel G, Macfadden-Murphy E, Farias R, Savage P, Leone A, Roussel L, Cools-Lartigue J, Gowing S, Berube J, Giannias B, Bourdeau F, Chan CHF, Spicer JD, Mcclure R, Park M, Rousseau S, Ferri LE (2020) Activation of the pattern recognition receptor NOD1 augments colon cancer metastasis. Protein Cell 11:187–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang L-J, Zhang N-N, Ding F, Li X-Y, Chen L, Zhang H-X, Zhang W, Chen S-J, Wang Z-G, Li J-M (2011) RA-inducible gene-I induction augments STAT1 activation to inhibit leukemia cell proliferation. Proceedings of the National Academy of Sciences 108:1897–1902

  • Kang JY, Nan X, Jin MS, Youn SJ, Ryu YH, Mah S, Han SH, Lee H, Paik SG, Lee JO (2009) Recognition of lipopeptide patterns by toll-like receptor 2-Toll-like receptor 6 heterodimer. Immunity 31:873–884

    Article  CAS  PubMed  Google Scholar 

  • Kaparakis-Liaskos M, Ferrero RL (2015) Immune modulation by bacterial outer membrane vesicles. Nat Rev Immunol 15:375–387

    Article  CAS  PubMed  Google Scholar 

  • Kato C, Kojima N (2010) SIGNR1 ligation on murine peritoneal macrophages induces IL-12 production through NFκB activation. Glycoconj J 27:525–531

    Article  CAS  PubMed  Google Scholar 

  • Kawauchi Y, Kuroda Y, Kojima N (2014) Comparison of the carbohydrate preference of SIGNR1 as a phagocytic receptor with the preference as an adhesion molecule. Int Immunopharmacol 19:27–36

    Article  CAS  PubMed  Google Scholar 

  • Kübler K, Gehrke N, Riemann S, Böhnert V, Zillinger T, Hartmann E, Pölcher M, Rudlowski C, Kuhn W, Hartmann G (2010) Targeted activation of RNA helicase retinoic acid–inducible Gene-I induces proimmunogenic apoptosis of human ovarian Cancer CellsRIG-I promotes immunogenic Tumor Cell Death. Cancer Res 70:5293–5304

    Article  PubMed  Google Scholar 

  • Kübler K, Tho Pesch C, Gehrke N, Riemann S, Daßler J, Coch C, Landsberg J, Wimmenauer V, Pölcher M, Rudlowski C (2011) Immunogenic cell death of human ovarian cancer cells induced by cytosolic poly (I: C) leads to myeloid cell maturation and activates NK cells. Eur J Immunol 41:3028–3039

    Article  PubMed  Google Scholar 

  • Kelly MG, Alvero AB, Chen R, Silasi D-A, Abrahams VM, Chan S, Visintin I, Rutherford T, Mor G (2006) TLR-4 signaling promotes Tumor Growth and Paclitaxel Chemoresistance in Ovarian Cancer. Cancer Res 66:3859–3868

    Article  CAS  PubMed  Google Scholar 

  • Kelley N, Jeltema D, Duan Y, He Y (2019) The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 20

  • Kenkel J, Ho P, Kongara S, Henning K, Kreder C, Nolin J, Chapin S, Kowanetz M, Alonso M, Ackerman S (2021) (BMJ Specialist Journals,

  • Khalifehzadeh R, Arami H (2020) The CpG molecular structure controls the mineralization of calcium phosphate nanoparticles and their immunostimulation efficacy as vaccine adjuvants. Nanoscale 12:9603–9615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Li WA, Choi Y, Lewin SA, Verbeke CS, Dranoff G, Mooney DJ (2015) Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat Biotechnol 33:64–72

    Article  CAS  PubMed  Google Scholar 

  • Kim SC, Song YS, Kim Y-T, Kim YT, Ryu K-S, Gunapalaiah B, Bi D, Bock HL, Park J-S (2011) Human papillomavirus 16/18 AS04-adjuvanted cervical cancer vaccine: immunogenicity and safety in 15–25 years old healthy korean women. J Gynecologic Oncol 22:67–75

    Article  CAS  Google Scholar 

  • Kingeter LM, Lin X (2012) C-type lectin receptor-induced NF-κB activation in innate immune and inflammatory responses. Cell Mol Immunol 9:105–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishore U, Greenhough TJ, Waters P, Shrive AK, Ghai R, Kamran MF, Bernal AL, Reid KB, Madan T, Chakraborty T (2006) Surfactant proteins SP-A and SP-D: structure, function and receptors. Mol Immunol 43:1293–1315

    Article  CAS  PubMed  Google Scholar 

  • Kofoed EM, Vance RE (2011) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477:592–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koppolu B, Zaharoff DA (2013) The effect of antigen encapsulation in chitosan particles on uptake, activation and presentation by antigen presenting cells. Biomaterials 34:2359–2369

    Article  CAS  PubMed  Google Scholar 

  • Koshy ST, Cheung AS, Gu L, Graveline AR, Mooney DJ (2017) Liposomal Delivery Enhances Immune Activation by STING Agonists for Cancer Immunotherapy. Advanced biosystems 1

  • Koster BD, López González M, Van Den Hout MF, Turksma AW, Sluijter BJ, Molenkamp BG, Van Leeuwen PA, Vosslamber S, Scheper RJ, Van Den Eertwegh AJ, Van Den Tol MP, Jordanova EJ, De Gruijl TD (2021) T cell infiltration on local CpG-B delivery in early-stage melanoma is predominantly related to CLEC9A(+)CD141(+) cDC1 and CD14(+) antigen-presenting cell recruitment. Journal for immunotherapy of cancer 9

  • Kreuter J, Speiser PP (1976) New adjuvants on a polymethylmethacrylate base. Infect Immun 13:204–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krieg AM (2001) Now I know my CpGs. Trends Microbiol 9:249–252

    Article  CAS  PubMed  Google Scholar 

  • Kuai R, Ochyl LJ, Bahjat KS, Schwendeman A, Moon JJ (2017) Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat Mater 16:489–496

    Article  CAS  PubMed  Google Scholar 

  • Kufer TA, Sansonetti PJ (2011) NLR functions beyond pathogen recognition. Nat Immunol 12:121–128

    Article  CAS  PubMed  Google Scholar 

  • Kwon D, Cha BG, Cho Y, Min J, Park EB, Kang SJ, Kim J (2017) Extra-large pore mesoporous silica nanoparticles for directing in vivo M2 macrophage polarization by delivering IL-4. Nano Lett 17:2747–2756

    Article  CAS  PubMed  Google Scholar 

  • Kwon YJ, Standley SM, Goh SL, Fréchet JM (2005) Enhanced antigen presentation and immunostimulation of dendritic cells using acid-degradable cationic nanoparticles. J Controlled Release: Official J Controlled Release Soc 105:199–212

    Article  CAS  Google Scholar 

  • Lara PN Jr, Douillard JY, Nakagawa K, Von Pawel J, Mckeage MJ, Albert I, Losonczy G, Reck M, Heo DS, Fan X, Fandi A, Scagliotti G (2011) Randomized phase III placebo-controlled trial of carboplatin and paclitaxel with or without the vascular disrupting agent vadimezan (ASA404) in advanced non-small-cell lung cancer. J Clin Oncology: Official J Am Soc Clin Oncol 29:2965–2971

    Article  CAS  Google Scholar 

  • Larson TA, Joshi PP, Sokolov K (2012) Preventing protein adsorption and macrophage uptake of gold nanoparticles via a hydrophobic shield. ACS Nano 6:9182–9190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauw FN, Caffrey DR, Golenbock DT (2005) Of mice and man: TLR11 (finally) finds profilin. Trends Immunol 26:509–511

    Article  CAS  PubMed  Google Scholar 

  • Lee IH, Kwon HK, An S, Kim D, Kim S, Yu MK, Lee JH, Lee TS, Im SH, Jon S (2012b) Imageable antigen-presenting gold nanoparticle vaccines for effective cancer immunotherapy in vivo. Angewandte Chemie (International ed. in English) 51:8800–8805

  • Lee J, Li L, Gretz N, Gebert J, Dihlmann S (2012a) Absent in melanoma 2 (AIM2) is an important mediator of interferon-dependent and -independent HLA-DRA and HLA-DRB gene expression in colorectal cancers. Oncogene 31:1242–1253

    Article  CAS  PubMed  Google Scholar 

  • Lee SW, Song MK, Baek KH, Park Y, Kim JK, Lee CH, Cheong HK, Cheong C, Sung YC (2000) Effects of a hexameric deoxyriboguanosine run conjugation into CpG oligodeoxynucleotides on their immunostimulatory potentials. Journal of immunology (Baltimore, Md.: 1950) 165:3631–3639

  • Leibundgut-Landmann S, Groß O, Robinson MJ, Osorio F, Slack EC, Tsoni SV, Schweighoffer E, Tybulewicz V, Brown GD, Ruland J (2007) Syk-and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol 8:630–638

    Article  CAS  PubMed  Google Scholar 

  • Leteux C, Chai W, Loveless RW, Yuen CT, Uhlin-Hansen L, Combarnous Y, Jankovic M, Maric SC, Misulovin Z, Nussenzweig MC, Feizi T (2000) The cysteine-rich domain of the macrophage mannose receptor is a multispecific lectin that recognizes chondroitin sulfates a and B and sulfated oligosaccharides of blood group Lewis(a) and Lewis(x) types in addition to the sulfated N-glycans of lutropin. J Exp Med 191:1117–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Pei H, Zhu B, Liang L, Wei M, He Y, Chen N, Li D, Huang Q, Fan C (2011) Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano 5:8783–8789

    Article  CAS  PubMed  Google Scholar 

  • Li J, Song W, Czerwinski DK, Varghese B, Uematsu S, Akira S, Krieg AM, Levy R (2007) Lymphoma immunotherapy with CpG oligodeoxynucleotides requires TLR9 either in the host or in the tumor itself. J Immunol 179:2493–2500

    Article  CAS  PubMed  Google Scholar 

  • Li L, Yin Q, Kuss P, Maliga Z, Millán JL, Wu H, Mitchison TJ (2014) Hydrolysis of 2’3’-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat Chem Biol 10:1043–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Liang X, Ma L, Shen L, Li T, Zheng L, Sun A, Shang W, Chen C, Zhao W (2018) MiR-22 sustains NLRP3 expression and attenuates H. pylori-induced gastric carcinogenesis. Oncogene 37:884–896

    Article  CAS  PubMed  Google Scholar 

  • Li S, Luo M, Wang Z, Feng Q, Wilhelm J, Wang X, Li W, Wang J, Cholka A, Fu Y-X, Sumer BD, Yu H, Gao J (2021) Prolonged activation of innate immune pathways by a polyvalent STING agonist. Nat Biomedical Eng 5:455–466

    Article  CAS  Google Scholar 

  • Li T, Hua C, Yue W, Wu J, Lv X, Wei Q, Zhu S, Zang G, Cui J, Liu YJ, Chen J (2020) Discrepant antitumor efficacies of three CpG oligodeoxynucleotide classes in monotherapy and co-therapy with PD-1 blockade. Pharmacol Res 161:105293

    Article  CAS  PubMed  Google Scholar 

  • Lin LL, Huang CC, Wu MT, Hsu WM, Chuang JH (2018) Innate immune sensor laboratory of genetics and physiology 2 suppresses tumor cell growth and functions as a prognostic marker in neuroblastoma. Cancer Sci 109:3494–3502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Pu Y, Cron K, Deng L, Kline J, Frazier WA, Xu H, Peng H, Fu YX, Xu MM (2015) CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. Nat Med 21:1209–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Yin Y, Wang L, Zhang W, Chen X, Yang X, Xu J, Ma G (2013) Surface hydrophobicity of microparticles modulates adjuvanticity. J Mater Chem B 1:3888–3896

    Article  CAS  PubMed  Google Scholar 

  • Llorente A, Skotland T, Sylvänne T, Kauhanen D, Róg T, Orłowski A, Vattulainen I, Ekroos K, Sandvig K (2013) Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim Biophys Acta 1831:1302–1309

    Article  CAS  PubMed  Google Scholar 

  • Lobato-Pascual A, Saether PC, Fossum S, Dissen E, Daws MR (2013) Mincle, the receptor for mycobacterial cord factor, forms a functional receptor complex with MCL and FcεRI-γ. Eur J Immunol 43:3167–3174

    Article  CAS  PubMed  Google Scholar 

  • Loetscher M, Gerber B, Loetscher P, Jones SA, Piali L, Clark-Lewis I, Baggiolini M, Moser B (1996) Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. J Exp Med 184:963–969

    Article  CAS  PubMed  Google Scholar 

  • Loetscher M, Loetscher P, Brass N, Meese E, Moser B (1998) Lymphocyte-specific chemokine receptor CXCR3: regulation, chemokine binding and gene localization. Eur J Immunol 28:3696–3705

    Article  CAS  PubMed  Google Scholar 

  • Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y (2014) Protein nanoparticles as drug delivery carriers for cancer therapy. Biomed Res Int 2014:180549

    Article  PubMed  PubMed Central  Google Scholar 

  • Lollo G, Vincent M, Ullio-Gamboa G, Lemaire L, Franconi F, Couez D, Benoit JP (2015) Development of multifunctional lipid nanocapsules for the co-delivery of paclitaxel and CpG-ODN in the treatment of glioblastoma. Int J Pharm 495:972–980

    Article  CAS  PubMed  Google Scholar 

  • Loo Y-M, Gale M Jr (2011) Immune signaling by RIG-I-like receptors. Immunity 34:680–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Love KT, Mahon KP, Levins CG, Whitehead KA, Querbes W, Dorkin JR, Qin J, Cantley W, Qin LL, Racie T, Frank-Kamenetsky M, Yip KN, Alvarez R, Sah DW, De Fougerolles A, Fitzgerald K, Koteliansky V, Akinc A, Langer R, Anderson DG (2010) Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci USA 107:1864–1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo M, Wang H, Wang Z, Cai H, Lu Z, Li Y, Du M, Huang G, Wang C, Chen X, Porembka MR, Lea J, Frankel AE, Fu YX, Chen ZJ, Gao J (2017) A STING-activating nanovaccine for cancer immunotherapy. Nat Nanotechnol 12:648–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo X, Lian Q, Li W, Chen L, Zhang R, Yang D, Gao L, Qi X, Liu Z, Liao G (2021) Fully synthetic mincle-dependent self-adjuvanting cancer vaccines elicit robust humoral and T cell-dependent immune responses and protect mice from tumor development. Chem Sci 12:15998–16013

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo Z, Wang C, Yi H, Li P, Pan H, Liu L, Cai L, Ma Y (2015) Nanovaccine loaded with poly I:C and STAT3 siRNA robustly elicits anti-tumor immune responses through modulating tumor-associated dendritic cells in vivo. Biomaterials 38:50–60

    Article  CAS  PubMed  Google Scholar 

  • Luster AD, Ravetch JV (1987) Biochemical characterization of a gamma interferon-inducible cytokine (IP-10). J Exp Med 166:1084–1097

    Article  CAS  PubMed  Google Scholar 

  • Lynn GM, Laga R, Darrah PA, Ishizuka AS, Balaci AJ, Dulcey AE, Pechar M, Pola R, Gerner MY, Yamamoto A, Buechler CR, Quinn KM, Smelkinson MG, Vanek O, Cawood R, Hills T, Vasalatiy O, Kastenmüller K, Francica JR, Stutts L, Tom JK, Ryu KA, Esser-Kahn AP, Etrych T, Fisher KD, Seymour LW, Seder RA (2015) In vivo characterization of the physicochemical properties of polymer-linked TLR agonists that enhance vaccine immunogenicity. Nat Biotechnol 33:1201–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Man SM, Karki R, Kanneganti TD (2016) AIM2 inflammasome in infection, cancer, and autoimmunity: role in DNA sensing, inflammation, and innate immunity. Eur J Immunol 46:269–280

    Article  CAS  PubMed  Google Scholar 

  • Mannhalter JW, Neychev HO, Zlabinger GJ, Ahmad R, Eibl MM (1985) Modulation of the human immune response by the non-toxic and non-pyrogenic adjuvant aluminium hydroxide: effect on antigen uptake and antigen presentation. Clin Exp Immunol 61:143–151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF (2008) Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 38:1404–1413

    Article  CAS  PubMed  Google Scholar 

  • Marabelle A, Kohrt H, Caux C, Levy R (2014) Intratumoral immunization: a new paradigm for cancer therapy. Clin Cancer Res 20:1747–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall JD, Fearon K, Abbate C, Subramanian S, Yee P, Gregorio J, Coffman RL, Van Nest G (2003) Identification of a novel CpG DNA class and motif that optimally stimulate B cell and plasmacytoid dendritic cell functions. J Leukoc Biol 73:781–792

    Article  CAS  PubMed  Google Scholar 

  • Mathur R, Zeng W, Hayden MS, Ghosh S (2016) Mice lacking TLR11 exhibit variable Salmonella typhi susceptibility. Cell 164:829–830

    Article  CAS  PubMed  Google Scholar 

  • Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8:603–612

    Article  CAS  PubMed  Google Scholar 

  • Meng Z, Lu M (2017) RNA Interference-Induced Innate immunity, off-target effect, or Immune. Adjuvant? Front Immunol 8:331

    PubMed  Google Scholar 

  • Meraz IM, Savage DJ, Segura-Ibarra V, Li J, Rhudy J, Gu J, Serda RE (2014) Adjuvant cationic liposomes presenting MPL and IL-12 induce cell death, suppress tumor growth, and alter the cellular phenotype of tumors in a murine model of breast cancer. Mol Pharm 11:3484–3491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molino NM, Anderson AK, Nelson EL, Wang SW (2013) Biomimetic protein nanoparticles facilitate enhanced dendritic cell activation and cross-presentation. ACS Nano 7:9743–9752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore E, Clavijo PE, Davis R, Cash H, Van Waes C, Kim Y, Allen C (2016) Established T cell–inflamed tumors rejected after adaptive resistance was reversed by combination STING activation and PD-1 pathway BlockadeRejection of established tumors with CDN and PD-L1 mAb. Cancer Immunol Res 4:1061–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreira LO, Zamboni DS (2012) NOD1 and NOD2 signaling in infection and inflammation. Front Immunol 3:328

    Article  PubMed  PubMed Central  Google Scholar 

  • Morelli AE, Larregina AT, Shufesky WJ, Sullivan ML, Stolz DB, Papworth GD, Zahorchak AF, Logar AJ, Wang Z, Watkins SC, Falo LD Jr, Thomson AW (2004) Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104:3257–3266

    Article  CAS  PubMed  Google Scholar 

  • Morishita M, Takahashi Y, Matsumoto A, Nishikawa M, Takakura Y (2016) Exosome-based tumor antigens-adjuvant co-delivery utilizing genetically engineered tumor cell-derived exosomes with immunostimulatory CpG DNA. Biomaterials 111:55–65

    Article  CAS  PubMed  Google Scholar 

  • Mou Y, Xing Y, Ren H, Cui Z, Zhang Y, Yu G, Urba WJ, Hu Q, Hu H (2017) The Effect of Superparamagnetic Iron Oxide Nanoparticle Surface Charge on Antigen Cross-Presentation. Nanoscale Res Lett 12:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Moyano DF, Saha K, Prakash G, Yan B, Kong H, Yazdani M, Rotello VM (2014) Fabrication of corona-free nanoparticles with tunable hydrophobicity. ACS Nano 8:6748–6755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moyano DF, Liu Y, Peer D, Rotello VM (2016) Modulation of Immune Response using Engineered Nanoparticle Surfaces. Small 12:76–82

    Article  CAS  PubMed  Google Scholar 

  • Moyer TJ, Kato Y, Abraham W, Chang JYH, Kulp DW, Watson N, Turner HL, Menis S, Abbott RK, Bhiman JN, Melo MB, Simon HA, Herrera-De La Mata S, Liang S, Seumois G, Agarwal Y, Li N, Burton DR, Ward AB, Schief WR, Crotty S, Irvine DJ (2020) Engineered immunogen binding to alum adjuvant enhances humoral immunity. Nat Med 26:430–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murugaiah V, Tsolaki AG, Kishore U (2020) Collectins: Innate Immune Pattern Recognition Molecules. Adv Exp Med Biol 1204:75–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nam J, Son S, Moon JJ (2017) Adjuvant-loaded Spiky Gold nanoparticles for activation of Innate Immune cells. Cell Mol Bioeng 10:341–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Napoletano C, Rughetti A, Agervig Tarp MP, Coleman J, Bennett EP, Picco G, Sale P, Denda-Nagai K, Irimura T, Mandel U, Clausen H, Frati L, Taylor-Papadimitriou J, Burchell J, Nuti M (2007) Tumor-associated Tn-MUC1 glycoform is internalized through the macrophage galactose-type C-type lectin and delivered to the HLA class I and II compartments in dendritic cells. Cancer Res 67:8358–8367

    Article  CAS  PubMed  Google Scholar 

  • Naseri N, Valizadeh H, Zakeri-Milani P (2015) Solid lipid nanoparticles and nanostructured lipid carriers: structure, Preparation and Application. Adv Pharm Bull 5:305–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nath A, Pal R, Singh LM, Saikia H, Rahaman H, Ghosh SK, Mazumder R, Sengupta M (2018) Gold–manganese oxide nanocomposite suppresses hypoxia and augments pro-inflammatory cytokines in tumor associated macrophages. Int Immunopharmacol 57:157–164

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TL, Choi Y, Kim J (2019) Mesoporous silica as a versatile platform for Cancer Immunotherapy. Advanced materials (Deerfield Beach. Fla) 31:e1803953

    Google Scholar 

  • Nguyen TL, Cha BG, Choi Y, Im J, Kim J (2020) Injectable dual-scale mesoporous silica cancer vaccine enabling efficient delivery of antigen/adjuvant-loaded nanoparticles to dendritic cells recruited in local macroporous scaffold. Biomaterials 239:119859

    Article  CAS  PubMed  Google Scholar 

  • Ni Q, Zhang F, Liu Y, Wang Z, Yu G, Liang B, Niu G, Su T, Zhu G, Lu G, Zhang L, Chen X (2020) A bi-adjuvant nanovaccine that potentiates immunogenicity of neoantigen for combination immunotherapy of colorectal cancer. Sci Adv 6:eaaw6071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norell H, Martins Da Palma T, Lesher A, Kaur N, Mehrotra M, Naga OS, Spivey N, Olafimihan S, Chakraborty NG, Voelkel-Johnson C, Nishimura MI, Mukherji B, Mehrotra S (2009) Inhibition of superoxide generation upon T-cell receptor engagement rescues Mart-1(27–35)-reactive T cells from activation-induced cell death. Cancer Res 69:6282–6289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuhn L, Van Hoecke L, Deswarte K, Schepens B, Li Y, Lambrecht BN, De Koker S, David SA, Saelens X, De Geest BG (2018) Potent anti-viral vaccine adjuvant based on pH-degradable nanogels with covalently linked small molecule imidazoquinoline TLR7/8 agonist. Biomaterials 178:643–651

  • Oberli MA, Reichmuth AM, Dorkin JR, Mitchell MJ, Fenton OS, Jaklenec A, Anderson DG, Langer R, Blankschtein D (2017) Lipid nanoparticle assisted mRNA delivery for Potent Cancer Immunotherapy. Nano Lett 17:1326–1335

    Article  CAS  PubMed  Google Scholar 

  • Ochyl LJ, Moon JJ (2019) Dendritic cell membrane vesicles for activation and maintenance of Antigen-Specific T cells. Adv Healthc Mater 8:e1801091

    Article  PubMed  Google Scholar 

  • Ogawa C, Liu YJ, Kobayashi KS (2011) Muramyl dipeptide and its derivatives: peptide adjuvant in immunological disorders and cancer therapy. Curr Bioact Compd 7:180–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh N, Park JH (2014) Endocytosis and exocytosis of nanoparticles in mammalian cells. Int J Nanomed 9(Suppl 1):51–63

    Google Scholar 

  • Oliveira-Nascimento L, Massari P, Wetzler LM (2012) The role of TLR2 in infection and immunity. Front Immunol 3:79

    Article  PubMed  PubMed Central  Google Scholar 

  • O’neill LA, Bryant CE, Doyle SL (2009) Therapeutic targeting of toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacol Rev 61:177–197

    Article  PubMed  PubMed Central  Google Scholar 

  • Ostrop J, Jozefowski K, Zimmermann S, Hofmann K, Strasser E, Lepenies B, Lang R (2015) Contribution of MINCLE-SYK Signaling to Activation of Primary Human APCs by Mycobacterial Cord Factor and the Novel Adjuvant TDB. Journal of immunology (Baltimore, Md.: 1950) 195:2417–2428

  • Palti Y (2011) Toll-like receptors in bony fish: from genomics to function. Dev Comp Immunol 35:1263–1272

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Singh S, Anang V, Bhatt AN, Natarajan K, Dwarakanath BS (2015) Pattern Recognition Receptors in Cancer Progression and Metastasis. Cancer Growth and Metastasis 8:25–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Park JH, Kim YG, Mcdonald C, Kanneganti TD, Hasegawa M, Body-Malapel M, Inohara N, Núñez G (2007) RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. Journal of immunology (Baltimore, Md.: 1950) 178:2380–2386

  • Parodi A, Quattrocchi N, Van De Ven AL, Chiappini C, Evangelopoulos M, Martinez JO, Brown BS, Khaled SZ, Yazdi IK, Enzo MV, Isenhart L, Ferrari M, Tasciotti E (2013) Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat Nanotechnol 8:61–68

    Article  CAS  PubMed  Google Scholar 

  • Patel JM, Vartabedian VF, Bozeman EN, Caoyonan BE, Srivatsan S, Pack CD, Dey P, D’souza MJ, Yang L, Selvaraj P (2016) Plasma membrane vesicles decorated with glycolipid-anchored antigens and adjuvants via protein transfer as an antigen delivery platform for inhibition of tumor growth. Biomaterials 74:231–244

    Article  CAS  PubMed  Google Scholar 

  • Patel SA, Minn AJ (2018) Combination Cancer Therapy with Immune Checkpoint Blockade: mechanisms and strategies. Immunity 48:417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patin EC, Willcocks S, Orr S, Ward TH, Lang R, Schaible UE (2016) Mincle-mediated anti-inflammatory IL-10 response counter-regulates IL-12 in vitro. Innate Immun 22:181–185

    Article  CAS  PubMed  Google Scholar 

  • Peek LJ, Middaugh CR, Berkland C (2008) Nanotechnology in vaccine delivery. Adv Drug Deliv Rev 60:915–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelka K, Latz E (2011) Getting closer to the dirty little secret. Immunity 34:455–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng S, Cao F, Xia Y, Gao XD, Dai L, Yan J, Ma G (2020) Particulate Alum via Pickering Emulsion for an Enhanced COVID-19 Vaccine Adjuvant. Advanced materials (Deerfield Beach, Fla.) 32:e2004210

  • Petersen LK, Ramer-Tait AE, Broderick SR, Kong CS, Ulery BD, Rajan K, Wannemuehler MJ, Narasimhan B (2011) Activation of innate immune responses in a pathogen-mimicking manner by amphiphilic polyanhydride nanoparticle adjuvants. Biomaterials 32:6815–6822

    Article  CAS  PubMed  Google Scholar 

  • Petrarca C, Clemente E, Amato V, Pedata P, Sabbioni E, Bernardini G, Iavicoli I, Cortese S, Niu Q, Otsuki T, Paganelli R, Di Gioacchino M (2015) Engineered metal based nanoparticles and innate immunity. Clin Mol Allergy: CMA 13:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Pitt JM, Charrier M, Viaud S, André F, Besse B, Chaput N, Zitvogel L (2014) Dendritic cell-derived exosomes as immunotherapies in the fight against cancer. Journal of immunology (Baltimore, Md.: 1950) 193:1006–1011

  • Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene, vol 282. Science, New York, N.Y.), pp 2085–2088

    Google Scholar 

  • Pradere J-P, Dapito DH, Schwabe RF (2014) The Yin and Yang of toll-like receptors in cancer. Oncogene 33:3485–3495

    Article  CAS  PubMed  Google Scholar 

  • Pricop D, Andrieş M (2014) Endocytosis and exocytosis of gold nanoparticles. Int J Nano 25:1–9

    Google Scholar 

  • Quinn KM, Yamamoto A, Costa A, Darrah PA, Lindsay RW, Hegde ST, Johnson TR, Flynn BJ, Loré K, Seder RA (2013) Coadministration of polyinosinic:polycytidylic acid and immunostimulatory complexes modifies antigen processing in dendritic cell subsets and enhances HIV gag-specific T cell immunity. Journal of immunology (Baltimore, Md.: 1950) 191:5085–5096

  • Rimaniol AC, Gras G, Verdier F, Capel F, Grigoriev VB, Porcheray F, Sauzeat E, Fournier JG, Clayette P, Siegrist CA, Dormont D (2004) Aluminum hydroxide adjuvant induces macrophage differentiation towards a specialized antigen-presenting cell type. Vaccine 22:3127–3135

    Article  CAS  PubMed  Google Scholar 

  • Robinson MJ, Osorio F, Rosas M, Freitas RP, Schweighoffer E, Gross O, Verbeek JS, Ruland J, Tybulewicz V, Brown GD, Moita LF, Taylor PR, Reis E, Sousa C (2009) Dectin-2 is a syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J Exp Med 206:2037–2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Röck J, Schneider E, Grün JR, Grützkau A, Küppers R, Schmitz J, Winkels G (2007) CD303 (BDCA-2) signals in plasmacytoid dendritic cells via a BCR‐like signalosome involving Syk, Slp65 and PLCγ2. Eur J Immunol 37:3564–3575

    Article  PubMed  Google Scholar 

  • Roeder A, Kirschning CJ, Rupec RA, Schaller M, Weindl G, Korting HC (2004) Toll-like receptors as key mediators in innate antifungal immunity. Med Mycol 42:485–498

    Article  CAS  PubMed  Google Scholar 

  • Rotte A (2019) Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J Experimental Clin Cancer Res 38:255

    Article  Google Scholar 

  • Saha K, Rahimi M, Yazdani M, Kim ST, Moyano DF, Hou S, Das R, Mout R, Rezaee F, Mahmoudi M, Rotello VM (2016) Regulation of Macrophage Recognition through the interplay of Nanoparticle Surface Functionality and Protein Corona. ACS Nano 10:4421–4430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saikia C, Gogoi PJ, Maji TKJJOM, Medicine G (2015) Chitosan: A Promising Biopolymer in Drug Delivery Applications. 2015:1–10

  • Salaun B, Coste I, Rissoan MC, Lebecque SJ, Renno T (2006) TLR3 can directly trigger apoptosis in human cancer cells. Journal of immunology (Baltimore, Md.: 1950) 176:4894–4901

  • Salazar AM, Erlich RB, Mark A, Bhardwaj N, Herberman RB (2014) Therapeutic in situ autovaccination against solid cancers with intratumoral poly-ICLC: case report, hypothesis, and clinical trial. Cancer Immunol Res 2:720–724

    Article  PubMed  Google Scholar 

  • Saleh M (2011) The machinery of nod-like receptors: refining the paths to immunity and cell death. Immunol Rev 243:235–246

    Article  CAS  PubMed  Google Scholar 

  • Sanders H, Feavers IM (2011) Adjuvant properties of meningococcal outer membrane vesicles and the use of adjuvants in Neisseria meningitidis protein vaccines. Expert Rev Vaccines 10:323–334

    Article  CAS  PubMed  Google Scholar 

  • Sato K, Yang XL, Yudate T, Chung JS, Wu J, Luby-Phelps K, Kimberly RP, Underhill D, Cruz PD Jr, Ariizumi K (2006) Dectin-2 is a pattern recognition receptor for fungi that couples with the fc receptor gamma chain to induce innate immune responses. J Biol Chem 281:38854–38866

    Article  CAS  PubMed  Google Scholar 

  • Scheffel F, Knuschke T, Otto L, Kollenda S, Sokolova V, Cosmovici C, Buer J, Timm J, Epple M, Westendorf AM (2020) Effective activation of Human Antigen-Presenting cells and cytotoxic CD8(+) T cells by a calcium phosphate-based nanoparticle vaccine delivery system. Vaccines 8.

  • Schneider C, Schmidt T, Ziske C, Tiemann K, Lee KM, Uhlinsky V, Behrens P, Sauerbruch T, Schmidt-Wolf IG, Mühlradt PF, Schmidt J, Märten A (2004) Tumour suppression induced by the macrophage activating lipopeptide MALP-2 in an ultrasound guided pancreatic carcinoma mouse model. Gut 53:355–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz K, Meijerink E, Speiser DE, Tissot AC, Cielens I, Renhof R, Dishlers A, Pumpens P, Bachmann MF (2005) Efficient homologous prime-boost strategies for T cell vaccination based on virus-like particles. Eur J Immunol 35:816–821

    Article  CAS  PubMed  Google Scholar 

  • Schwarz TF (2009) Clinical update of the AS04-adjuvanted human papillomavirus-16/18 cervical cancer vaccine. Cervarix Adv Therapy 26:983–998

    Article  Google Scholar 

  • Schwechheimer C, Kuehn MJ (2015) Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol 13:605–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seth A, Heo MB, Sung MH, Lim YT (2015) Infection-mimicking poly(γ-glutamic acid) as adjuvant material for effective anti-tumor immune response. Int J Biol Macromol 75:495–504

    Article  CAS  PubMed  Google Scholar 

  • Shang L, Nienhaus K, Nienhaus GU (2014) Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol 12:5

    Article  Google Scholar 

  • Shao K, Singha S, Clemente-Casares X, Tsai S, Yang Y, Santamaria P (2015) Nanoparticle-based immunotherapy for cancer. ACS Nano 9:16–30

    Article  CAS  PubMed  Google Scholar 

  • Shekarian T, Valsesia-Wittmann S, Brody J, Michallet MC, Depil S, Caux C, Marabelle A (2017) Pattern recognition receptors: immune targets to enhance cancer immunotherapy. Ann Oncol 28:1756–1766

    Article  CAS  PubMed  Google Scholar 

  • Shetab Boushehri MA, Lamprecht A (2018) TLR4-Based immunotherapeutics in Cancer: a review of the achievements and shortcomings. Mol Pharm 15:4777–4800

    Article  CAS  PubMed  Google Scholar 

  • Shima F, Akagi T, Akashi M (2015) Effect of hydrophobic side chains in the induction of Immune responses by nanoparticle adjuvants consisting of amphiphilic poly(γ-glutamic acid). Bioconjug Chem 26:890–898

    Article  CAS  PubMed  Google Scholar 

  • Siefert AL, Caplan MJ, Fahmy TM (2016) Artificial bacterial biomimetic nanoparticles synergize pathogen-associated molecular patterns for vaccine efficacy. Biomaterials 97:85–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SK, Streng-Ouwehand I, Litjens M, Kalay H, Burgdorf S, Saeland E, Kurts C, Unger WW, Van Kooyk Y (2011) Design of neo-glycoconjugates that target the mannose receptor and enhance TLR-independent cross-presentation and Th1 polarization. Eur J Immunol 41:916–925

    Article  CAS  PubMed  Google Scholar 

  • Song W, Das M, Xu Y, Si X, Zhang Y, Tang Z, Chen XJMTN (2019) Leveraging biomaterials for cancer immunotherapy: targeting pattern recognition receptors. 5:100029

  • Storni T, Ruedl C, Schwarz K, Schwendener RA, Renner WA, Bachmann MF (2004) Nonmethylated CG motifs packaged into virus-like particles induce protective cytotoxic T cell responses in the absence of systemic side effects. Journal of immunology (Baltimore, Md.: 1950) 172:1777–1785

  • Sun B, Ji Z, Liao YP, Wang M, Wang X, Dong J, Chang CH, Li R, Zhang H, Nel AE, Xia T (2013a) Engineering an effective immune adjuvant by designed control of shape and crystallinity of aluminum oxyhydroxide nanoparticles. ACS Nano 7:10834–10849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun B, Zhao X, Gu W, Cao P, Movahedi F, Wu Y, Xu ZP, Gu W (2021a) ATP stabilised and sensitised calcium phosphate nanoparticles as effective adjuvants for a DNA vaccine against cancer. J Mater Chem B 9:7435–7446

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Kees T, Almeida AS, Liu B, He XY, Ng D, Han X, Spector DL, Mcneish IA, Gimotty P, Adams S, Egeblad M (2021b) Activating a collaborative innate-adaptive immune response to control metastasis. Cancer Cell 39:1361–1374e1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Wu J, Du F, Chen X, Chen ZJ (2013b) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science (New York, N.Y.) 339:786–791

  • Sun X, Zhang Y, Li J, Park KS, Han K, Zhou X, Xu Y, Nam J, Xu J, Shi X, Wei L, Lei YL, Moon JJ (2021c) Amplifying STING activation by cyclic dinucleotide-manganese particles for local and systemic cancer metalloimmunotherapy. Nat Nanotechnol 16:1260–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Liu J (2014) Potential of cancer cell-derived exosomes in clinical application: a review of recent research advances. Clin Ther 36:863–872

    Article  PubMed  Google Scholar 

  • Sun ZY, Chen PG, Liu YF, Shi L, Zhang BD, Wu JJ, Zhao YF, Chen YX, Li YM (2017) Self-assembled Nano-Immunostimulant for Synergistic Immune activation. Chembiochem: A European Journal of Chemical Biology 18:1721–1729

    Article  CAS  PubMed  Google Scholar 

  • Sutmuller RP, Den Brok MH, Kramer M, Bennink EJ, Toonen LW, Kullberg B-J, Joosten LA, Akira S, Netea MG, Adema GJ (2006) Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Investig 116:485–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson CL, Wilson TJ, Strauch P, Colonna M, Pelanda R, Torres RM (2010) Type I IFN enhances follicular B cell contribution to the T cell–independent antibody response. J Exp Med 207:1485–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swanson KV, Deng M, Ting JP-Y (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19:477–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tada H, Nemoto E, Shimauchi H, Watanabe T, Mikami T, Matsumoto T, Ohno N, Tamura H, Shibata K, Akashi S, Miyake K, Sugawara S, Takada H (2002) Saccharomyces cerevisiae- and Candida albicans-derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14- and toll-like receptor 4-dependent manner. Microbiol Immunol 46:503–512

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Misato K, Aoshi T, Yamamoto Y, Kubota Y, Wu X, Kuroda E, Ishii KJ, Yamamoto H, Yoshioka Y (2018) Carbonate apatite Nanoparticles Act as Potent Vaccine Adjuvant Delivery Vehicles by enhancing Cytokine Production Induced by Encapsulated cytosine-phosphate-guanine oligodeoxynucleotides. Front Immunol 9:783

    Article  PubMed  PubMed Central  Google Scholar 

  • Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820

    Article  CAS  PubMed  Google Scholar 

  • Tel J, Benitez-Ribas D, Hoosemans S, Cambi A, Adema GJ, Figdor CG, Tacken PJ, De Vries IJM (2011) DEC‐205 mediates antigen uptake and presentation by both resting and activated human plasmacytoid dendritic cells. Eur J Immunol 41:1014–1023

    Article  CAS  PubMed  Google Scholar 

  • Temizoz B, Hioki K, Kobari S, Jounai N, Kusakabe T, Lee MSJ, Coban C, Kuroda E, Ishii KJ (2022) Anti-tumor immunity by transcriptional synergy between TLR9 and STING activation. Int Immunol 34:353–364

    Article  CAS  PubMed  Google Scholar 

  • Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, Miyake K, Freudenberg M, Galanos C, Simon JC (2002) Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 195:99–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas M, Sadjadian P, Kollmeier J, Lowe J, Mattson P, Trout J, Gargano M, Patchen M, Walsh R, Beliveau M (2017) A randomized, open-label, multicenter, phase II study evaluating the efficacy and safety of BTH1677 (1, 3–1, 6 beta glucan; Imprime PGG) in combination with cetuximab and chemotherapy in patients with advanced non-small cell lung cancer. Investig New Drugs 35:345–358

    Article  CAS  Google Scholar 

  • Théry C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581–593

    Article  PubMed  Google Scholar 

  • Tomić S, Ðokić J, Vasilijić S, Ogrinc N, Rudolf R, Pelicon P, Vučević D, Milosavljević P, Janković S, Anžel I, Rajković J, Rupnik MS, Friedrich B, Colić M (2014) Size-dependent effects of gold nanoparticles uptake on maturation and antitumor functions of human dendritic cells in vitro. PLoS ONE 9:e96584

    Article  PubMed  PubMed Central  Google Scholar 

  • Tretiakova DS, Vodovozova EL (2022) Liposomes as Adjuvants and Vaccine Delivery Systems. Biochemistry (Moscow) supplement. Series A. Membrane and cell Biology 16:1–20

    CAS  PubMed  Google Scholar 

  • Trumpfheller C, Caskey M, Nchinda G, Longhi MP, Mizenina O, Huang Y, Schlesinger SJ, Colonna M, Steinman RM (2008) The microbial mimic poly IC induces durable and protective CD4 + T cell immunity together with a dendritic cell targeted vaccine. Proc Natl Acad Sci USA 105:2574–2579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uto T, Akagi T, Toyama M, Nishi Y, Shima F, Akashi M, Baba M (2011) Comparative activity of biodegradable nanoparticles with aluminum adjuvants: antigen uptake by dendritic cells and induction of immune response in mice. Immunol Lett 140:36–43

    Article  CAS  PubMed  Google Scholar 

  • Van Den Boorn JG, Hartmann G (2013) Turning tumors into vaccines: co-opting the innate immune system. Immunity 39:27–37

    Article  PubMed  Google Scholar 

  • Vermaelen K (2019) Vaccine strategies to Improve Anti-cancer Cellular Immune responses. Front Immunol 10:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayan D, Young A, Teng MWL, Smyth MJ (2017) Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer 17:709–724

    Article  CAS  PubMed  Google Scholar 

  • Vivier E, Malissen B (2005) Innate and adaptive immunity: specificities and signaling hierarchies revisited. Nat Immunol 6:17–21

    Article  CAS  PubMed  Google Scholar 

  • Vollmer J, Weeratna R, Payette P, Jurk M, Schetter C, Laucht M, Wader T, Tluk S, Liu M, Davis HL, Krieg AM (2004) Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur J Immunol 34:251–262

    Article  CAS  PubMed  Google Scholar 

  • Walkey CD, Olsen JB, Guo H, Emili A, Chan WC (2012) Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc 134:2139–2147

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Sun W, Wright G, Wang AZ, Gu Z (2016) Inflammation-triggered Cancer immunotherapy by programmed delivery of CpG and Anti-PD1 antibody. Advanced materials (Deerfield Beach. Fla) 28:8912–8920

    CAS  Google Scholar 

  • Wang C, Guan Y, Lv M, Zhang R, Guo Z, Wei X, Du X, Yang J, Li T, Wan Y, Su X, Huang X, Jiang Z (2018) Manganese increases the sensitivity of the cGAS-STING pathway for double-stranded DNA and is required for the host defense against DNA viruses. Immunity 48:675–687e677

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Guo Z, Ma X, Hu Y, Huang X, Fan Y, Yang S, Guo LJCP (2010) Effects of sulfated lentinan on cellular infectivity of avian infectious bronchitis virus. 79:461–465

  • Wang F, Zhang R, Wu Q, Chen T, Sun P, Shi AC (2014) Probing the nanostructure, interfacial interaction, and dynamics of chitosan-based nanoparticles by multiscale solid-state NMR. ACS Appl Mater Interfaces 6:21397–21407

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Liu Y, Li W, Jiang X, Ji Y, Wu X, Xu L, Qiu Y, Zhao K, Wei T (2011) Selective targeting of gold nanorods at the mitochondria of cancer cells: implications for cancer therapy. Nano Lett 11:772–780

    Article  CAS  PubMed  Google Scholar 

  • Wang L, He Y, He T, Liu G, Lin C, Li K, Lu L, Cai K (2020) Lymph node-targeted immune-activation mediated by imiquimod-loaded mesoporous polydopamine based-nanocarriers. Biomaterials 255:120208

    Article  CAS  PubMed  Google Scholar 

  • Watson A, Madsen J, Clark HW (2020) SP-A and SP-D: dual functioning Immune Molecules with Antiviral and Immunomodulatory Properties. Front Immunol 11:622598

    Article  CAS  PubMed  Google Scholar 

  • Weis WI, Drickamer K, Hendrickson WA (1992) Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature 360:127–134

    Article  CAS  PubMed  Google Scholar 

  • Williamson JR, Raghuraman MK, Cech TR (1989) Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell 59:871–880

    Article  CAS  PubMed  Google Scholar 

  • Wilson DS, Hirosue S, Raczy MM, Bonilla-Ramirez L, Jeanbart L, Wang R, Kwissa M, Franetich JF, Broggi MaS, Diaceri G, Quaglia-Thermes X, Mazier D, Swartz MA, Hubbell JA (2019) Antigens reversibly conjugated to a polymeric glyco-adjuvant induce protective humoral and cellular immunity. Nat Mater 18:175–185

    Article  CAS  PubMed  Google Scholar 

  • Woo S-R, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MY, Duggan R, Wang Y, Barber GN, Fitzgerald KA (2014) STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41:830–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Yamamoto H, Nakanishi H, Yamamoto Y, Inoue A, Tei M, Hirose H, Uemura M, Nishimura J, Hata T, Takemasa I, Mizushima T, Hossain S, Akaike T, Matsuura N, Doki Y, Mori M (2015) Innovative delivery of siRNA to solid tumors by super carbonate apatite. PLoS ONE 10:e0116022

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia Q, Gong C, Gu F, Wang Z, Hu C, Zhang L, Qiang L, Ding X, Gao S, Gao Y (2018) Functionalized Multi-Walled Carbon Nanotubes for Targeting Delivery of Immunostimulatory CpG oligonucleotides against prostate Cancer. J Biomed Nanotechnol 14:1613–1626

    Article  CAS  PubMed  Google Scholar 

  • Xing J, Liu Z, Huang Y, Qin T, Bo R, Zheng S, Luo L, Huang Y, Niu Y, Wang D (2016) Lentinan-Modified Carbon Nanotubes as an Antigen Delivery System modulate Immune Response in Vitro and in vivo. ACS Appl Mater Interfaces 8:19276–19283

    Article  CAS  PubMed  Google Scholar 

  • Xiong Z, Ohlfest JR (2011) Topical imiquimod has therapeutic and immunomodulatory effects against intracranial tumors. Journal of immunotherapy (Hagerstown, Md.: 1997) 34:264–269

  • Xu Y, Sherwood JA, Lackey KH, Qin Y, Bao Y (2016) The responses of immune cells to iron oxide nanoparticles. J Appl Toxicology: JAT 36:543–553

    Article  CAS  Google Scholar 

  • Xu Y, Ma S, Zhao J, Chen H, Si X, Huang Z, Yu Z, Song W, Tang Z, Chen X (2022) Mannan-decorated pathogen-like polymeric nanoparticles as nanovaccine carriers for eliciting superior anticancer immunity. Biomaterials 284:121489

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Oda M, Nakano M, Watanabe N, Yabiku K, Shibutani M, Inoue M, Imagawa H, Nagahama M, Himeno S, Setsu K, Sakurai J, Nishizawa M (2013) Development of vizantin, a safe immunostimulant, based on the structure-activity relationship of trehalose-6,6’-dicorynomycolate. J Med Chem 56:381–385

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki S, Ishikawa E, Sakuma M, Hara H, Ogata K, Saito T (2008) Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol 9:1179–1188

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki S, Matsumoto M, Takeuchi O, Matsuzawa T, Ishikawa E, Sakuma M, Tateno H, Uno J, Hirabayashi J, Mikami Y, Takeda K, Akira S, Saito T (2009) C-type lectin mincle is an activating receptor for pathogenic fungus. Malassezia Proc Natl Acad Sci United States Am 106:1897–1902

    Article  CAS  Google Scholar 

  • Yan D, Wei YQ, Guo HC, Sun SQ (2015b) The application of virus-like particles as vaccines and biological vehicles. Appl Microbiol Biotechnol 99:10415–10432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan H, Kamiya T, Suabjakyong P, Tsuji NM (2015a) Targeting C-type lectin receptors for cancer immunity. Front Immunol 6:408

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang R, Xu J, Xu L, Sun X, Chen Q, Zhao Y, Peng R, Liu Z (2018) Cancer Cell membrane-coated adjuvant nanoparticles with mannose modification for effective anticancer vaccination. ACS Nano 12:5121–5129

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Jambhrunkar M, Abbaraju PL, Yu M, Zhang M, Yu C (2017) Understanding the Effect of Surface Chemistry of Mesoporous Silica Nanorods on Their Vaccine Adjuvant Potency. Advanced healthcare materials 6

  • Yildiz S, Alpdundar E, Gungor B, Kahraman T, Bayyurt B, Gursel I, Gursel M (2015) Enhanced immunostimulatory activity of cyclic dinucleotides on mouse cells when complexed with a cell-penetrating peptide or combined with CpG. Eur J Immunol 45:1170–1179

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5:730–737

    Article  CAS  PubMed  Google Scholar 

  • Yoshino S, Tabata T, Hazama S, Iizuka N, Yamamoto K, Hirayama M, Tangoku A, Oka M (2000) Immunoregulatory effects of the antitumor polysaccharide lentinan on Th1/Th2 balance in patients with digestive cancers. Anticancer Res 20:4707–4711

    CAS  PubMed  Google Scholar 

  • Zaharoff DA, Rogers CJ, Hance KW, Schlom J, Greiner JW (2007) Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination. Vaccine 25:2085–2094

    Article  CAS  PubMed  Google Scholar 

  • Zaidi AH, Kelly RJ, Gorbunova A, Omstead AN, Salvitti MS, Zheng P, Kosovec JE, Lee S, Ayazi S, Babar L, Finley GG, Goel A, Jobe BA (2021) Intratumoral immunotherapy with STING agonist, ADU-S100, induces CD8 + T-cell mediated anti-tumor immunity in an esophageal adenocarcinoma model. Oncotarget 12:292–303

    Article  PubMed  PubMed Central  Google Scholar 

  • Zariri A, Beskers J, Van De Waterbeemd B, Hamstra HJ, Bindels TH, Van Riet E, Van Putten JP, Van Der Ley P (2016) Meningococcal outer membrane vesicle composition-dependent activation of the Innate Immune Response. Infect Immun 84:3024–3033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Żelechowska P, Brzezińska-Błaszczyk E, Różalska S, Agier J, Kozłowska E (2021) Mannan activates tissue native and IgE-sensitized mast cells to proinflammatory response and chemotaxis in TLR4-dependent manner. J Leukoc Biol 109:931–942

    Article  PubMed  Google Scholar 

  • Zhang B-D, Wu J-J, Li W-H, Hu H-G, Zhao L, He P-Y, Zhao Y-F, Li Y-M (2022b) STING and TLR7/8 agonists-based nanovaccines for synergistic antitumor immune activation. Nano Res 15:6328–6339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J-G, Czabotar PE, Policheni AN, Caminschi I, San Wan S, Kitsoulis S, Tullett KM, Robin AY, Brammananth R, Van Delft MF (2012) The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity 36:646–657

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Zhu G, Mei L, Wu C, Qiu L, Cui C, Liu Y, Teng IT, Tan W (2015) Self-assembled DNA immunonanoflowers as multivalent CpG nanoagents. ACS Appl Mater Interfaces 7:24069–24074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Wang C, Guan Y, Wei X, Sha M, Yi M, Jing M, Lv M, Guo W, Xu J, Wan Y, Jia XM, Jiang Z (2021) Manganese salts function as potent adjuvants. Cell Mol Immunol 18:1222–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Liu Y, Zhou J, Wang J, Jin G, Wang X (2022a) Breast Cancer Vaccine containing a Novel toll-like receptor 7 agonist and an aluminum adjuvant exerts Antitumor Effects. International journal of molecular sciences 23.

  • Zhang W, An M, Xi J, Liu H (2017) Targeting CpG adjuvant to Lymph Node via Dextran Conjugate enhances Antitumor Immunotherapy. Bioconjug Chem 28:1993–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Sun Z, Pei J, Luo Q, Zeng X, Li Q, Yang Z, Quan J (2018) Identification of α-Mangostin as an agonist of human STING. ChemMedChem 13:2057–2064

    Article  CAS  PubMed  Google Scholar 

  • Zhan Z, Xie X, Cao H, Zhou X, Zhang XD, Fan H, Liu Z (2014) Autophagy facilitates TLR4- and TLR3-triggered migration and invasion of lung cancer cells through the promotion of TRAF6 ubiquitination. Autophagy 10:257–268

    Article  CAS  PubMed  Google Scholar 

  • Zhao F, Guo Z, Ma Z-R, Ma L-L, Zhao J (2021) Antitumor activities of Grifola frondosa (maitake) polysaccharide: a meta-analysis based on preclinical evidence and quality assessment. J Ethnopharmacol 280:114395

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Ma Z, Wang B, Guan Y, Su XD, Jiang Z (2020) Mn(2+) directly activates cGAS and structural analysis suggests Mn(2+) induces a noncanonical Catalytic synthesis of 2’3’-cGAMP. Cell Rep 32:108053

    Article  CAS  PubMed  Google Scholar 

  • Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G (2015) Type I interferons in anticancer immunity. Nat Rev Immunol 15:405–414

    Article  CAS  PubMed  Google Scholar 

  • Zom GG, Willems M, Meeuwenoord NJ, Reintjens NRM, Tondini E, Khan S, Overkleeft HS, Van Der Marel GA, Codee JDC, Ossendorp F, Filippov DV (2019) Dual synthetic peptide Conjugate Vaccine simultaneously triggers TLR2 and NOD2 and activates human dendritic cells. Bioconjug Chem 30:1150–1161

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2022R1A2C1006643, 2022R1A4A3026347). All figures were created with Biorender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jutaek Nam.

Ethics declarations

Conflict of interest

All authors (Z. Li, I. Rana, G. Park, J. Lee, C. E. Park, and J. Nam) declare no conflict of interest.

Statement of human and animal rights

This article does not contain any studies with human and animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Rana, I., Park, G. et al. Pattern recognition receptors and their nano-adjuvants for cancer immunotherapy. J. Pharm. Investig. 53, 685–706 (2023). https://doi.org/10.1007/s40005-023-00633-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-023-00633-y

Keywords

Navigation