Skip to main content

Advertisement

Log in

Controlled release and targeted drug delivery with poly(lactic-co-glycolic acid) nanoparticles: reviewing two decades of research

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Background

Controlled release and targeted delivery of the drug payload are the two most fascinating applications of nanoparticle-based systems explored in the recent past. The advantages of achieving control over drug release kinetics include prolonged therapeutic effects, reduced dosing frequency, and fewer plasma level fluctuations and side effects, whereas targeted delivery offers enhanced drug accumulation at the site of action and reduced off-target toxicity, thereby improving the management of chronic diseases. Poly(lactic-co-glycolic acid) nanoparticles (PLGA-NPs) hold tremendous promise for such applications because of their ability to modulate drug release, pharmacokinetics, the biodistribution profiles of drugs, and the surface functionalization for targeted delivery.

Area covered

This review primarily highlights the applications of PLGA-NPs based on the controlled release of therapeutics after oral, parenteral, pulmonary, ocular, intranasal, and dermal administration and tissue engineering. The potential of PLGA-NPs for targeted delivery to various diseases, such as cancer, rheumatoid arthritis, inflammatory bowel disease, and neurological disorders, has also been extensively reviewed. This review concludes with a description of the limitations of PLGA-NPs and the hurdles associated with their clinical application.

Expert opinion

PLGA-NPs stand out among other nanoparticles because of their excellent biocompatibility and biodegradability. Although the presented data suggest that they are the major shareholders in controlled-release and targeted-delivery systems, no PLGA-NP formulation has reached clinics. Therefore, further insights into the rational design of PLGA-NPs and clinically relevant testing are required to narrow the gap between the bench and bedside realities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelghany SM, Quinn DJ, Ingram RJ, Gilmore BF, Donnelly RF, Taggart CC, Scott CJ (2012) Gentamicin-loaded nanoparticles show improved antimicrobial effects towards Pseudomonas aeruginosa infection. Int J Nanomed 7:4053–4063

    CAS  Google Scholar 

  • Alexis FJPi (2005) Factors affecting the degradation and drug-release mechanism of poly (lactic acid) and poly [(lactic acid)-co-(glycolic acid)]. Polym Int 54:36–46

    Article  CAS  Google Scholar 

  • Amjadi I, Rabiee M, Hosseini MS (2013) Anticancer activity of nanoparticles based on PLGA and its co-polymer: in-vitro evaluation. Iran J Pharm Res 12:623–634

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ananta JS, Paulmurugan R, Massoud TF (2016) Temozolomide-loaded PLGA nanoparticles to treat glioblastoma cells: a biophysical and cell culture evaluation. Neurol Res 38:51–59

    Article  PubMed  Google Scholar 

  • Anselmo AC, Mitragotri S (2016) Nanoparticles in the clinic. Bioeng Transl Med 1:10–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Anwer MK, Mohammad M, Ezzeldin E, Fatima F, Alalaiwe A, Iqbal M (2019) Preparation of sustained release apremilast-loaded PLGA nanoparticles: in vitro characterization and in vivo pharmacokinetic study in rats. Int J Nanomed 14:1587–1595

    Article  CAS  Google Scholar 

  • Arpagaus C (2019) PLA/PLGA nanoparticles prepared by nano spray drying. J Pharm Invest 49:405–426

    Article  CAS  Google Scholar 

  • Astete CE, Sabliov CM (2006) Synthesis and characterization of PLGA nanoparticles. J Biomater Sci Polym Ed 17:247–289

    Article  PubMed  CAS  Google Scholar 

  • Atlihan-Gundogdu E, Ilem-Ozdemir D, Ekinci M, Ozgenc E, Demir ES, Sánchez-Dengra B, González-Alvárez I (2020) Recent developments in cancer therapy and diagnosis. J Pharm Investig 50:349–361

    Article  Google Scholar 

  • Bilati U, Allémann E, Doelker E (2005) Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci 24:67–75

    Article  PubMed  CAS  Google Scholar 

  • Boddu SH, Vaishya R, Jwala J, Vadlapudi A, Pal D, Mitra AJMc (2011) Preparation and characterization of folate conjugated nanoparticles of doxorubicin using PLGA-PEG-FOL polymer. Med Chem 2:68–75

    Google Scholar 

  • Borah A, Pillai SC, Rochani AK, Palaninathan V, Nakajima Y, Maekawa T, Kumar DS (2020) GANT61 and curcumin-loaded PLGA nanoparticles for GLI1 and PI3K/Akt-mediated inhibition in breast adenocarcinoma. Nanotechnology 31:185102

    Article  PubMed  CAS  Google Scholar 

  • Bozdag S, Dillen K, Vandervoort J, Ludwig A (2005) The effect of freeze-drying with different cryoprotectants and gamma-irradiation sterilization on the characteristics of ciprofloxacin HCl-loaded poly(D, L-lactide-glycolide) nanoparticles. J Pharm Pharmacol 57:699–707

    Article  PubMed  CAS  Google Scholar 

  • Budhian A, Siegel SJ, Winey KI (2005) Production of haloperidol-loaded PLGA nanoparticles for extended controlled drug release of haloperidol. J Microencapsul 22:773–785

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Wang B, Wang Y, Lou D (2014) Dual drug release from core-shell nanoparticles with distinct release profiles. J Pharm Sci 103:3205–3216

    Article  PubMed  CAS  Google Scholar 

  • Cayero-Otero MD, Gomes MJ, Martins C, Álvarez-Fuentes J, Fernández-Arévalo M, Sarmento B, Martín-Banderas L (2019) In vivo biodistribution of venlafaxine-PLGA nanoparticles for brain delivery: plain vs. functionalized nanoparticles. Expert Opin Drug Deliv 16:1413–1427

    Article  PubMed  CAS  Google Scholar 

  • Cerqueira BBS, Lasham A, Shelling AN, Al-Kassas R (2017) Development of biodegradable PLGA nanoparticles surface engineered with hyaluronic acid for targeted delivery of paclitaxel to triple negative breast cancer cells. Mater Sci Eng 76:593–600

    Article  CAS  Google Scholar 

  • Chan JM, Zhang L, Yuet KP, Liao G, Rhee JW, Langer R, Farokhzad OC (2009) PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. Biomaterials 30:1627–1634

    Article  PubMed  CAS  Google Scholar 

  • Chang J, Jallouli Y, Kroubi M, Yuan XB, Feng W, Kang CS, Pu PY, Betbeder D (2009) Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood-brain barrier. Int J Pharm 379:285–292

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee M, Chanda NJMA (2022) Formulation of PLGA Nano-carrier: Specialized modification for cancer therapeutic applications. Mater Adv

  • Chen C, Yang W, Wang D-T, Chen C-L, Zhuang Q-Y, Kong X-D (2014) A modified spontaneous emulsification solvent diffusion method for the preparation of curcumin-loaded PLGA nanoparticles with enhanced in vitro anti-tumor activity. Front Mater Sci 8:332–342

    Article  Google Scholar 

  • Chen T, Liu W, Xiong S, Li D, Fang S, Wu Z, Wang Q, Chen X (2019) Nanoparticles mediating the sustained puerarin release facilitate improved brain delivery to treat Parkinson’s disease. ACS Appl Mater Interfaces 11:45276–45289

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Shan X, Luo C, He Z (2020) Emerging nanoparticulate drug delivery systemsof metformin. J Pharm Invest 50:219–230

    Article  Google Scholar 

  • Chereddy KK, Her C-H, Comune M, Moia C, Lopes A, Porporato PE, Vanacker J, Lam MC, Steinstraesser L, Sonveaux P, Zhu H, Ferreira LS, Vandermeulen G, Préat V (2014) PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing. J Control Release 194:138–147

    Article  PubMed  CAS  Google Scholar 

  • Cho H-J (2020) Recent progresses in the development of hyaluronic acid-based nanosystems for tumor-targeted drug delivery and cancer imaging. J Pharm Investig 50:115–129

    Article  CAS  Google Scholar 

  • Chong CS, Cao M, Wong WW, Fischer KP, Addison WR, Kwon GS, Tyrrell DL, Samuel J (2005) Enhancement of T helper type 1 immune responses against hepatitis B virus core antigen by PLGA nanoparticle vaccine delivery. J Control Release 102:85–99

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Sela E, Chorny M, Koroukhov N, Danenberg HD, Golomb G (2009a) A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J Control Release 133:90–95

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Sela E, Teitlboim S, Chorny M, Koroukhov N, Danenberg HD, Gao J, Golomb G (2009b) Single and double emulsion manufacturing techniques of an amphiphilic drug in PLGA nanoparticles: formulations of mithramycin and bioactivity. J Pharm Sci 98:1452–1462

    Article  PubMed  CAS  Google Scholar 

  • Cunha A, Gaubert A, Latxague L, Dehay B (2021) PLGA-based nanoparticles for neuroprotective drug delivery in neurodegenerative diseases. Pharmaceutics 13:1042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • da Silva CL, Del Ciampo JO, Rossetti FC, Bentley MV, Pierre MB (2013) Improved in vitro and in vivo cutaneous delivery of protoporphyrin IX from PLGA-based nanoparticles. Photochem Photobiol 89:1176–1184

    Article  PubMed  Google Scholar 

  • Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161:505–522

    Article  PubMed  CAS  Google Scholar 

  • Danhier F, Lecouturier N, Vroman B, Jérôme C, Marchand-Brynaert J, Feron O, Préat V (2009) Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. J Control Release 133:11–17

    Article  PubMed  CAS  Google Scholar 

  • Debnath SK, Saisivam S, Omri A (2017) PLGA ethionamide nanoparticles for pulmonary delivery: development and in vivo evaluation of dry powder inhaler. J Pharm Biomed Anal 145:854–859

    Article  PubMed  CAS  Google Scholar 

  • Dhakal S, Hiremath J, Bondra K, Lakshmanappa YS, Shyu D-L, Ouyang K, Kang K-i, Binjawadagi B, Goodman J, Tabynov K, Krakowka S, Narasimhan B, Lee CW, Renukaradhya GJ (2017) Biodegradable nanoparticle delivery of inactivated swine influenza virus vaccine provides heterologous cell-mediated immune response in pigs. J Control Release 247:194–205

    Article  PubMed  CAS  Google Scholar 

  • Dillen K, Vandervoort J, Van den Mooter G, Verheyden L, Ludwig A (2004) Factorial design, physicochemical characterisation and activity of ciprofloxacin-PLGA nanoparticles. Int J Pharm 275:171–187

    Article  PubMed  CAS  Google Scholar 

  • Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A (2017) Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomed 12:7291–7309

    Article  Google Scholar 

  • Ding D, Zhu Q (2018) Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Mater Sci Eng 92:1041–1060

    Article  CAS  Google Scholar 

  • Eivazi N, Rahmani R, Paknejad M (2020) Specific cellular internalization and pH-responsive behavior of doxorubicin loaded PLGA-PEG nanoparticles targeted with anti EGFRvIII antibody. Life Sci 261:118361

    Article  PubMed  CAS  Google Scholar 

  • Elsewedy HS, Dhubiab BEA, Mahdy MA, Elnahas HM (2020) Development, optimization, and evaluation of PEGylated brucine-loaded PLGA nanoparticles. Drug Deliv 27:1134–1146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Emami F, Mostafavi Yazdi SJ, Na DH (2019) Poly(lactic acid)/poly(lactic-co-glycolic acid) particulate carriers for pulmonary drug delivery. J Pharm Invest 49:427–442

    Article  CAS  Google Scholar 

  • Esim O, Savaser A, Ozkan CK, Oztuna A, Goksel BA, Ozler M, Tas C, Ozkan Y (2020) Nose to brain delivery of eletriptan hydrobromide nanoparticles: preparation, in vitro/in vivo evaluation and effect on trigeminal activation. J Drug Deliv Sci Technol 59:101919

    Article  CAS  Google Scholar 

  • Español L, Larrea A, Andreu V, Mendoza G, Arruebo M, Sebastian V, Aurora-Prado MS, Kedor-Hackmann ERM, Santoro MIRM, Santamaria J (2016) Dual encapsulation of hydrophobic and hydrophilic drugs in PLGA nanoparticles by a single-step method: drug delivery and cytotoxicity assays. RSC Adv 6:111060–111069

    Article  Google Scholar 

  • Frasco MF, Almeida GM, Santos-Silva F, Pereira Mdo C, Coelho MA (2015) Transferrin surface-modified PLGA nanoparticles-mediated delivery of a proteasome inhibitor to human pancreatic cancer cells. J Biomed Mater Res A 103:1476–1484

    Article  PubMed  Google Scholar 

  • Fredenberg S, Wahlgren M, Reslow M, Axelsson A (2011) The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—a review. Int J Pharm 415:34–52

    Article  PubMed  CAS  Google Scholar 

  • Gangapurwala G, Vollrath A, De San Luis A, Schubert US (2020) PLA/PLGA-based drug delivery systems produced with supercritical CO(2)—a green future for particle formulation? Pharmaceutics 12:1118

    Article  PubMed Central  CAS  Google Scholar 

  • Gao M, Shen X, Mao S (2020) Factors influencing drug deposition in thenasal cavity upon delivery via nasal sprays. J Pharm Investig 50:251–259

    Article  CAS  Google Scholar 

  • Gdowski AS, Ranjan A, Sarker MR, Vishwanatha JKJN (2017) Bone-targeted cabazitaxel nanoparticles for metastatic prostate cancer skeletal lesions and pain. Nanomedicine 12:2083–2095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gomes C, Moreira RG, Castell-Perez E (2011) Poly (DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications. J Food Sci 76:N16-24

    Article  PubMed  CAS  Google Scholar 

  • Grune C, Zens C, Czapka A, Scheuer K, Thamm J, Hoeppener S, Jandt KD, Werz O, Neugebauer U, Fischer D (2021) Sustainable preparation of anti-inflammatory atorvastatin PLGA nanoparticles. Int J Pharm 599:120404

    Article  PubMed  CAS  Google Scholar 

  • Guo J, Gao X, Su L, Xia H, Gu G, Pang Z, Jiang X, Yao L, Chen J, Chen H (2011) Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 32:8010–8020

    Article  PubMed  CAS  Google Scholar 

  • Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G (2010) Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine 6:324–333

    Article  PubMed  CAS  Google Scholar 

  • Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G (2011) Biodegradable levofloxacin nanoparticles for sustained ocular drug delivery. J Drug Target 19:409–417

    Article  PubMed  CAS  Google Scholar 

  • Haggag Y, Abdel-Wahab Y, Ojo O, Osman M, El-Gizawy S, El-Tanani M, Faheem A, McCarron P (2016) Preparation and in vivo evaluation of insulin-loaded biodegradable nanoparticles prepared from diblock copolymers of PLGA and PEG. Int J Pharm 499:236–246

    Article  PubMed  CAS  Google Scholar 

  • Han FY, Thurecht KJ, Whittaker AK, Smith MT (2016) Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Front Pharmacol 7:185

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanna LA, Basalious EB, ON EL (2016) Respirable controlled release polymeric colloid (RCRPC) of bosentan for the management of pulmonary hypertension: in vitro aerosolization, histological examination and in vivo pulmonary absorption. Drug Deliv 24:188–198

    Article  PubMed  Google Scholar 

  • Haque S, Boyd BJ, McIntosh MP, Pouton CW, Kaminskas LM, Whittaker M (2018) Suggested procedures for the reproducible synthesis of poly(d, l-lactide-co-glycolide) nanoparticles using the emulsification solvent diffusion platform. Curr Nanosci 14:448–453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hariharan S, Bhardwaj V, Bala I, Sitterberg J, Bakowsky U, Ravi Kumar MN (2006) Design of estradiol loaded PLGA nanoparticulate formulations: a potential oral delivery system for hormone therapy. Pharm Res 23:184–195

    Article  PubMed  CAS  Google Scholar 

  • Householder KT, DiPerna DM, Chung EP, Wohlleb GM, Dhruv HD, Berens ME, Sirianni RW (2015) Intravenous delivery of camptothecin-loaded PLGA nanoparticles for the treatment of intracranial glioma. Int J Pharm 479:374–380

    Article  PubMed  CAS  Google Scholar 

  • Italia JL, Bhatt DK, Bhardwaj V, Tikoo K, Kumar MNVR (2007) PLGA nanoparticles for oral delivery of cyclosporine: nephrotoxicity and pharmacokinetic studies in comparison to Sandimmune Neoral®. J Control Release 119:197–206

    Article  PubMed  CAS  Google Scholar 

  • Jain AK, Swarnakar NK, Godugu C, Singh RP, Jain S (2011) The effect of the oral administration of polymeric nanoparticles on the efficacy and toxicity of tamoxifen. Biomaterials 32:503–515

    Article  PubMed  CAS  Google Scholar 

  • Jain GK, Pathan SA, Akhter S, Ahmad N, Jain N, Talegaonkar S, Khar RK, Ahmad FJJPd, Stability (2010) Mechanistic study of hydrolytic erosion and drug release behaviour of PLGA nanoparticles: Influence of chitosan. Polym Degrad Stab 95:2360–2366

    Article  CAS  Google Scholar 

  • Jain RA (2000) The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 21:2475–2490

    Article  PubMed  CAS  Google Scholar 

  • Jain S, Rathi VV, Jain AK, Das M, Godugu C (2012) Folate-decorated PLGA nanoparticles as a rationally designed vehicle for the oral delivery of insulin. Nanomedicine (Lond) 7:1311–1337

    Article  CAS  Google Scholar 

  • Jaradat A, Macedo MH, Sousa F, Arkill K, Alexander C, Aylott J, Sarmento B (2020) Prediction of the enhanced insulin absorption across a triple co-cultured intestinal model using mucus penetrating PLGA nanoparticles. Int J Pharm 585:119516

    Article  PubMed  CAS  Google Scholar 

  • Jiang X, Lin H, Jiang D, Xu G, Fang X, He L, Xu M, Tang B, Wang Z, Cui D, Chen F, Geng H (2016) Co-delivery of VEGF and bFGF via a PLGA nanoparticle-modified BAM for effective contracture inhibition of regenerated bladder tissue in rabbits. Sci Rep 6:20784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang X, Xiong Q, Xu G, Lin H, Fang X, Cui D, Xu M, Chen F, Geng H (2015) VEGF-loaded nanoparticle-modified BAMAs enhance angiogenesis and inhibit graft shrinkage in tissue-engineered bladder. Ann Biomed Eng 43:2577–2586

    Article  PubMed  Google Scholar 

  • Jin H, Pi J, Zhao Y, Jiang J, Li T, Zeng X, Yang P, Evans CE, Cai J (2017) EGFR-targeting PLGA-PEG nanoparticles as a curcumin delivery system for breast cancer therapy. Nanoscale 9:16365–16374

    Article  PubMed  CAS  Google Scholar 

  • Jin K, Luo Z, Zhang B, Pang Z (2018) Biomimetic nanoparticles for inflammation targeting. Acta Pharm Sin B 8:23–33

    Article  PubMed  Google Scholar 

  • Jose S, Sowmya S, Cinu TA, Aleykutty NA, Thomas S, Souto EB (2014) Surface modified PLGA nanoparticles for brain targeting of Bacoside-A. Eur J Pharm Sci 63:29–35

    Article  PubMed  CAS  Google Scholar 

  • Joshi SA, Chavhan SS, Sawant KK (2010) Rivastigmine-loaded PLGA and PBCA nanoparticles: preparation, optimization, characterization, in vitro and pharmacodynamic studies. Eur J Pharm Biopharm 76:189–199

    Article  PubMed  CAS  Google Scholar 

  • Kalam MA, Alshamsan A (2017) Poly (d, l-lactide-co-glycolide) nanoparticles for sustained release of tacrolimus in rabbit eyes. Biomed Pharmacother 94:402–411

    Article  PubMed  Google Scholar 

  • Kamaly N, Yameen B, Wu J, Farokhzad OC (2016) Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem Rev 116:2602–2663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanemaru M, Asai J, Jo J-i, Arita T, Kawai-Ohnishi M, Tsutsumi M, Wada M, Tabata Y, Katoh N (2019) Nanoparticle-mediated local delivery of pioglitazone attenuates bleomycin-induced skin fibrosis. J Dermatol Sci 93:41–49

    Article  PubMed  CAS  Google Scholar 

  • Karimi Zarchi AA, Abbasi S, Faramarzi MA, Gilani K, Ghazi-Khansari M, Amani A (2015) Development and optimization of N-Acetylcysteine-loaded poly (lactic-co-glycolic acid) nanoparticles by electrospray. Int J Biol Macromol 72:764–770

    Article  PubMed  CAS  Google Scholar 

  • Katara R, Sachdeva S, Majumdar DK (2017) Enhancement of ocular efficacy of aceclofenac using biodegradable PLGA nanoparticles: formulation and characterization. Drug Deliv Transl Res 7:632–641

    Article  PubMed  CAS  Google Scholar 

  • Khaledi S, Jafari S, Hamidi S, Molavi O, Davaran S (2020) Preparation and characterization of PLGA-PEG-PLGA polymeric nanoparticles for co-delivery of 5-Fluorouracil and Chrysin. J Biomater Sci Polym Ed 31:1107–1126

    Article  PubMed  CAS  Google Scholar 

  • Khalil NM, Nascimento TCFd, Casa DM, Dalmolin LF, Mattos ACd, Hoss I, Romano MA, Mainardes RM (2013) Pharmacokinetics of curcumin-loaded PLGA and PLGA–PEG blend nanoparticles after oral administration in rats. Colloids Surf B 101:353–360

    Article  CAS  Google Scholar 

  • Kim Y-C, Min KA, Jang D-J, Ahn TY, Min JH, Yu BE, Cho KH (2020) Practical approaches on the long-acting injections. J Pharm Invest 50:147–157

    Article  CAS  Google Scholar 

  • Kumar R, Sahoo GC, Pandey K, Das VNR, Topno RK, Ansari MY, Rana S, Das P (2016) Development of PLGA-PEG encapsulated miltefosine based drug delivery system against visceral leishmaniasis. Mater Sci Eng 59:748–753

    Article  CAS  Google Scholar 

  • Lee G-Y, Zeb A, Kim E-H, Suh B, Shin Y-J, Kim D, Kim K-W, Choe Y-H, Choi H-I, Lee C-H, Qureshi OS, Han I-B, Chang S-Y, Bae O-N, Kim J-K (2020) CORM-2-entrapped ultradeformable liposomes ameliorate acute skin inflammation in an ear edema model via effective CO delivery. Acta Pharm Sin B 10:2362–2373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee JH, Yeo Y (2015) Controlled drug release from pharmaceutical nanocarriers. Chem Eng Sci 125:75–84

    Article  PubMed  CAS  Google Scholar 

  • Lee YH, Mei F, Bai MY, Zhao S, Chen DR (2010) Release profile characteristics of biodegradable-polymer-coated drug particles fabricated by dual-capillary electrospray. J Control Release 145:58–65

    Article  PubMed  CAS  Google Scholar 

  • Li H, Tong Y, Bai L, Ye L, Zhong L, Duan X, Zhu Y (2018a) Lactoferrin functionalized PEG-PLGA nanoparticles of shikonin for brain targeting therapy of glioma. Int J Biol Macromol 107:204–211

    Article  PubMed  CAS  Google Scholar 

  • Li K, Pang L, Pan X, Fan S, Wang X, Wang Q, Dai P, Gao W, Gao J (2021) GE11 modified PLGA/TPGS nanoparticles targeting delivery of salinomycin to breast cancer cells. Technol Cancer Res Treat 20:15330338211004954

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Q, Huang Y (2020) Mitochondrial targeted strategies and theirapplication for cancer and other diseases treatment. J Pharm Invest 50:271–293

    Article  Google Scholar 

  • Li R, He Y, Zhu Y, Jiang L, Zhang S, Qin J, Wu Q, Dai W, Shen S, Pang Z, Wang J (2019) Route to rheumatoid arthritis by macrophage-derived microvesicle-coated nanoparticles. Nano Lett 19:124–134

    Article  PubMed  CAS  Google Scholar 

  • Li R, Liang J, He Y, Qin J, He H, Lee S, Pang Z, Wang J (2018b) Sustained Release of Immunosuppressant by Nanoparticle-anchoring Hydrogel Scaffold Improved the Survival of Transplanted Stem Cells and Tissue Regeneration. Theranostics 8:878–893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Z, Tao W, Zhang D, Wu C, Song B, Wang S, Wang T, Hu M, Liu X, Wang Y, Sun Y, Sun J (2017) The studies of PLGA nanoparticles loading atorvastatin calcium for oral administration in vitro and in vivo. Asian J Pharm Sci 12:285–291

    Article  PubMed  Google Scholar 

  • Liu M, Zhang J, Shan W, Huang Y (2015) Developments of mucus penetrating nanoparticles. Asian J Pharm Sci 10:275–282

    Article  Google Scholar 

  • Luo L, Yang J, Oh Y, Hartsock MJ, Xia S, Kim Y-C, Ding Z, Meng T, Eberhart CG, Ensign LM, Thorne JE, Stark WJ, Duh EJ, Xu Q, Hanes J (2019) Controlled release of corticosteroid with biodegradable nanoparticles for treating experimental autoimmune uveitis. J Control Release 296:68–80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mainardes RM, Evangelista RC (2005a) PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. Int J Pharm 290:137–144

    Article  PubMed  CAS  Google Scholar 

  • Mainardes RM, Evangelista RC (2005b) Praziquantel-loaded PLGA nanoparticles: preparation and characterization. J Microencapsul 22:13–24

    Article  PubMed  CAS  Google Scholar 

  • Maksimenko O, Malinovskaya J, Shipulo E, Osipova N, Razzhivina V, Arantseva D, Yarovaya O, Mostovaya U, Khalansky A, Fedoseeva V, Alekseeva A, Vanchugova L, Gorshkova M, Kovalenko E, Balabanyan V, Melnikov P, Baklaushev V, Chekhonin V, Kreuter J, Gelperina S (2019) Doxorubicin-loaded PLGA nanoparticles for the chemotherapy of glioblastoma: towards the pharmaceutical development. Int J Pharm 572:118733

    Article  PubMed  CAS  Google Scholar 

  • Malathi S, Balasubramanian S (2012) PLGA nanoparticles for anti tuberculosis drug delivery. Adv Mater Res Trans Tech Publ, pp 465–469

  • Marante T, Viegas C, Duarte I, Macedo AS, Fonte P (2020) An overview on spray-drying of protein-loaded polymeric nanoparticles for dry powder inhalation. Pharmaceutics 12:1032

    Article  PubMed Central  CAS  Google Scholar 

  • Marimuthu M, Bennet D, Kim S (2013) Self-assembled nanoparticles of PLGA-conjugated glucosamine as a sustained transdermal drug delivery vehicle. Polym J 45:202–209

    Article  CAS  Google Scholar 

  • Mazumdar S, Chitkara D, Mittal A (2021) Exploration and insights into the cellular internalization and intracellular fate of amphiphilic polymeric nanocarriers. Acta Pharm Sin B 11:903–924

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCarron PA, Donnelly RF, Marouf W (2006) Celecoxib-loaded poly(D, L-lactide-co-glycolide) nanoparticles prepared using a novel and controllable combination of diffusion and emulsification steps as part of the salting-out procedure. J Microencapsul 23:480–498

    Article  PubMed  CAS  Google Scholar 

  • Mendoza-Muñoz N, Quintanar-Guerrero D, Allémann E (2012) The impact of the salting-out technique on the preparation of colloidal particulate systems for pharmaceutical applications. Recent Pat Drug Deliv Formul 6:236–249

    Article  PubMed  Google Scholar 

  • Mir M, Ahmed N, Rehman Au (2017) Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B 159:217–231

    Article  CAS  Google Scholar 

  • Mirakabad FST, Nejati-Koshki K, Akbarzadeh A, Yamchi MR, Milani M, Zarghami N, Zeighamian V, Rahimzadeh A, Alimohammadi S, Hanifehpour Y, Joo SW (2014) PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac J Cancer Prev 15:517–535

    Article  Google Scholar 

  • Mittal G, Sahana DK, Bhardwaj V, Ravi Kumar MNV (2007) Estradiol loaded PLGA nanoparticles for oral administration: Effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J Control Release 119:77–85

    Article  PubMed  CAS  Google Scholar 

  • Mohammadi-Samani S, Taghipour B (2015) PLGA micro and nanoparticles in delivery of peptides and proteins; problems and approaches. Pharm Dev Technol 20:385–393

    Article  PubMed  CAS  Google Scholar 

  • Moreno D, Zalba S, Navarro I, Tros de Ilarduya C, Garrido MJ (2010) Pharmacodynamics of cisplatin-loaded PLGA nanoparticles administered to tumor-bearing mice. Eur J Pharm Biopharm 74:265–274

    Article  PubMed  CAS  Google Scholar 

  • Moulari B, Béduneau A, Pellequer Y, Lamprecht A (2014) Lectin-decorated nanoparticles enhance binding to the inflamed tissue in experimental colitis. J Control Release 188:9–17

    Article  PubMed  CAS  Google Scholar 

  • Mu L, Feng SS (2003) PLGA/TPGS nanoparticles for controlled release of paclitaxel: effects of the emulsifier and drug loading ratio. Pharm Res 20:1864–1872

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay R, Sen R, Paul B, Kazi J, Ganguly S, Debnath MC (2020) Gemcitabine co-encapsulated with curcumin in folate decorated PLGA nanoparticles; a novel approach to treat breast adenocarcinoma. Pharm Res 37:56

    Article  PubMed  CAS  Google Scholar 

  • Naserifar M, Hosseinzadeh H, Abnous K, Mohammadi M, Taghdisi SM, Ramezani M, Alibolandi M (2020) Oral delivery of folate-targeted resveratrol-loaded nanoparticles for inflammatory bowel disease therapy in rats. Life Sci 262:118555

    Article  PubMed  CAS  Google Scholar 

  • Nava-Arzaluz MG, Piñón-Segundo E, Ganem-Rondero A, Lechuga-Ballesteros D (2012) Single emulsion-solvent evaporation technique and modifications for the preparation of pharmaceutical polymeric nanoparticles. Recent Pat Drug Deliv Formul 6:209–223

    Article  PubMed  CAS  Google Scholar 

  • Nguyen HT, Tran TH, Kim JO, Yong CS, Nguyen CN (2015) Enhancing the in vitro anti-cancer efficacy of artesunate by loading into poly-D, L-lactide-co-glycolide (PLGA) nanoparticles. Arch Pharm Res 38:716–724

    Article  PubMed  CAS  Google Scholar 

  • Nguyen OOT, Tran KD, Ha NT, Doan SM, Dinh TTH, Tran TH (2021) Oral cavity: an open horizon for nanopharmaceuticals. J Pharm Invest 51:413–424

    Article  Google Scholar 

  • Nguyen T-T-L, Maeng H-J (2022) Pharmacokinetics and pharmacodynamics of intranasal solid lipid nanoparticles and nanostructured lipid carriers for nose-to-brain delivery. Pharmaceutics 14:572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nigam K, Kaur A, Tyagi A, Nematullah M, Khan F, Gabrani R, Dang S (2019) Nose-to-brain delivery of lamotrigine-loaded PLGA nanoparticles. Drug Deliv Transl Res 9:879–890

    Article  PubMed  CAS  Google Scholar 

  • Niu L, Chu LY, Burton SA, Hansen KJ, Panyam J (2019) Intradermal delivery of vaccine nanoparticles using hollow microneedle array generates enhanced and balanced immune response. J Control Release 294:268–278

    Article  PubMed  CAS  Google Scholar 

  • Operti MC, Bernhardt A, Grimm S, Engel A, Figdor CG, Tagit O (2021) PLGA-based nanomedicines manufacturing: Technologies overview and challenges in industrial scale-up. Int J Pharm 605:120807

    Article  PubMed  CAS  Google Scholar 

  • Pachauri M, Gupta ED, Ghosh PCJJodds, technology, (2015) Piperine loaded PEG-PLGA nanoparticles: Preparation, characterization and targeted delivery for adjuvant breast cancer chemotherapy. J Drug Deliv Sci Technol 29:269–282

    Article  CAS  Google Scholar 

  • Pan Q, Xu Q, Boylan NJ, Lamb NW, G. Emmert D, Yang J-C, Tang L, Heflin T, Alwadani S, Eberhart CG, Stark WJ, Hanes J, (2015) Corticosteroid-loaded biodegradable nanoparticles for prevention of corneal allograft rejection in rats. J Control Release 201:32–40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Panda A, Meena J, Katara R, Majumdar DK (2016) Formulation and characterization of clozapine and risperidone co-entrapped spray-dried PLGA nanoparticles. Pharm Dev Technol 21:43–53

    Article  PubMed  CAS  Google Scholar 

  • Panyam J, Dali MM, Sahoo SK, Ma W, Chakravarthi SS, Amidon GL, Levy RJ, Labhasetwar V (2003) Polymer degradation and in vitro release of a model protein from poly(D, L-lactide-co-glycolide) nano- and microparticles. J Control Release 92:173–187

    Article  PubMed  CAS  Google Scholar 

  • Patel BK, Parikh RH, Patel N (2018a) Targeted delivery of mannosylated-PLGA nanoparticles of antiretroviral drug to brain. Int J Nanomed 13:97–100

    Article  CAS  Google Scholar 

  • Patel J, Amrutiya J, Bhatt P, Javia A, Jain M, Misra A (2018b) Targeted delivery of monoclonal antibody conjugated docetaxel loaded PLGA nanoparticles into EGFR overexpressed lung tumour cells. J Microencapsul 35:204–217

    Article  PubMed  CAS  Google Scholar 

  • Pawar D, Mangal S, Goswami R, Jaganathan KS (2013) Development and characterization of surface modified PLGA nanoparticles for nasal vaccine delivery: effect of mucoadhesive coating on antigen uptake and immune adjuvant activity. Eur J Pharm Biopharm 85:550–559

    Article  PubMed  CAS  Google Scholar 

  • Pawar H, Wankhade SR, Yadav DK, Suresh S (2016) Development and evaluation of co-formulated docetaxel and curcumin biodegradable nanoparticles for parenteral administration. Pharm Dev Technol 21:725–736

    Article  PubMed  CAS  Google Scholar 

  • Pederzoli F, Ruozi B, Duskey J, Hagmeyer S, Sauer AK, Grabrucker S, Coelho R, Oddone N, Ottonelli I, Daini E, Zoli M, Vandelli MA, Tosi G, Grabrucker AM (2019) Nanomedicine against Aβ aggregation by β–sheet breaker peptide delivery. In Vitro Evid Pharm 11:572

    CAS  Google Scholar 

  • Peltonen L, Valo H, Kolakovic R, Laaksonen T, Hirvonen J (2010) Electrospraying, spray drying and related techniques for production and formulation of drug nanoparticles. Expert Opin Drug Deliv 7:705–719

    Article  PubMed  CAS  Google Scholar 

  • Pillai RR, Somayaji SN, Rabinovich M, Hudson MC, Gonsalves KE (2008) Nafcillin-loaded PLGA nanoparticles for treatment of osteomyelitis. Biomed Mater 3:034114

    Article  PubMed  Google Scholar 

  • Polakovic M, Görner T, Gref R, Dellacherie E (1999) Lidocaine loaded biodegradable nanospheres. II. Modelling of drug release. J Control Release 60:169–177

    Article  PubMed  CAS  Google Scholar 

  • Pourtalebi Jahromi L, Ghazali M, Ashrafi H, Azadi A (2020) A comparison of models for the analysis of the kinetics of drug release from PLGA-based nanoparticles. Heliyon 6:e03451

    Article  PubMed  PubMed Central  Google Scholar 

  • Rafiei P, Haddadi A (2017) Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile. Int J Nanomed 12:935–947

    Article  CAS  Google Scholar 

  • Ramirez JC, Flores-Villaseñor SE, Vargas-Reyes E, Herrera-Ordonez J, Torres-Rincón S, Peralta-Rodríguez RDJJoDDS, Technology (2020) Preparation of PDLLA and PLGA nanoparticles stabilized with PVA and a PVA-SDS mixture: studies on particle size, degradation and drug release. J Drug Deliv Sci Technol 60:101907

    Article  CAS  Google Scholar 

  • Rao JP, Geckeler KEJPips, (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36:887–913

    Article  CAS  Google Scholar 

  • Ren H, Han M, Zhou J, Zheng ZF, Lu P, Wang JJ, Wang JQ, Mao QJ, Gao JQ, Ouyang HW (2014) Repair of spinal cord injury by inhibition of astrocyte growth and inflammatory factor synthesis through local delivery of flavopiridol in PLGA nanoparticles. Biomaterials 35:6585–6594

    Article  PubMed  CAS  Google Scholar 

  • Rezvantalab S, Drude NI, Moraveji MK, Güvener N, Koons EK, Shi Y, Lammers T, Kiessling F (2018) PLGA-based nanoparticles in cancer treatment. Front Pharmacol 9:1260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rizvi SZH, Shah FA, Khan N, Muhammad I, Ali KH, Ansari MM, Din Fu, Qureshi OS, Kim K-W, Choe Y-H, Kim J-K, Zeb A (2019) Simvastatin-loaded solid lipid nanoparticles for enhanced anti-hyperlipidemic activity in hyperlipidemia animal model. Int J Pharm 560:136–143

    Article  PubMed  CAS  Google Scholar 

  • Roberts R, Smyth JW, Will J, Roberts P, Grek CL, Ghatnekar GS, Sheng Z, Gourdie RG, Lamouille S, Foster EJ (2020) Development of PLGA nanoparticles for sustained release of a connexin43 mimetic peptide to target glioblastoma cells. Mater Sci Eng 108:110191

    Article  CAS  Google Scholar 

  • RS P, Bomb K, Srivastava R, Bandyopadhyaya RJJoPR (2020) Dual drug delivery of curcumin and niclosamide using PLGA nanoparticles for improved therapeutic effect on breast cancer cells. J Polym Res 27

  • Said-Elbahr R, Nasr M, Alhnan MA, Taha I, Sammour O (2016) Nebulizable colloidal nanoparticles co-encapsulating a COX-2 inhibitor and a herbal compound for treatment of lung cancer. Eur J Pharm Biopharm 103:1–12

    Article  PubMed  CAS  Google Scholar 

  • Samadi N, Abbadessa A, Di Stefano A, van Nostrum CF, Vermonden T, Rahimian S, Teunissen EA, van Steenbergen MJ, Amidi M, Hennink WE (2013) The effect of lauryl capping group on protein release and degradation of poly(D, L-lactic-co-glycolic acid) particles. J Control Release 172:436–443

    Article  PubMed  CAS  Google Scholar 

  • Sarti F, Perera G, Hintzen F, Kotti K, Karageorgiou V, Kammona O, Kiparissides C, Bernkop-Schnürch A (2011) In vivo evidence of oral vaccination with PLGA nanoparticles containing the immunostimulant monophosphoryl lipid A. Biomaterials 32:4052–4057

    Article  PubMed  CAS  Google Scholar 

  • Schafroth N, Arpagaus C, Jadhav UY, Makne S, Douroumis D (2012) Nano and microparticle engineering of water insoluble drugs using a novel spray-drying process. Colloids Surf B 90:8–15

    Article  CAS  Google Scholar 

  • Seju U, Kumar A, Sawant KK (2011) Development and evaluation of olanzapine-loaded PLGA nanoparticles for nose-to-brain delivery: in vitro and in vivo studies. Acta Biomater 7:4169–4176

    Article  PubMed  CAS  Google Scholar 

  • Shamarekh KS, Gad HA, Soliman ME, Sammour OAJJoDDS, Technology (2020) Development and evaluation of protamine-coated PLGA nanoparticles for nose-to-brain delivery of tacrine: In-vitro and in-vivo assessment. J Drug Deliv Sci Technol 57:101724

    Article  CAS  Google Scholar 

  • Shi Y, Xue J, Jia L, Du Q, Niu J, Zhang D (2018) Surface-modified PLGA nanoparticles with chitosan for oral delivery of tolbutamide. Colloids Surf B 161:67–72

    Article  CAS  Google Scholar 

  • Shweta S, Ankush P, Shivpoojan K, Rajat S (2016) PLGA-based nanoparticles: a new paradigm in biomedical applications. Trends Anal Chem 80:30–40

    Article  Google Scholar 

  • Sinha B, Mukherjee B, Pattnaik G (2013) Poly-lactide-co-glycolide nanoparticles containing voriconazole for pulmonary delivery: in vitro and in vivo study. Nanomedicine 9:94–104

    Article  PubMed  CAS  Google Scholar 

  • Son J, Yang SM, Yi G, Roh YJ, Park H, Park JM, Choi MG, Koo H (2018) Folate-modified PLGA nanoparticles for tumor-targeted delivery of pheophorbide a in vivo. Biochem Biophys Res Commun 498:523–528

    Article  PubMed  CAS  Google Scholar 

  • Sousa F, Dhaliwal HK, Gattacceca F, Sarmento B, Amiji MM (2019) Enhanced anti-angiogenic effects of bevacizumab in glioblastoma treatment upon intranasal administration in polymeric nanoparticles. J Control Release 309:37–47

    Article  PubMed  CAS  Google Scholar 

  • Stevanovic M, Uskokovic DJCN (2009) Poly (lactide-co-glycolide)-based micro and nanoparticles for the controlled drug delivery of vitamins. Curr Nanosci 5:1–14

    Article  CAS  Google Scholar 

  • Su Y, Zhang B, Sun R, Liu W, Zhu Q, Zhang X, Wang R, Chen C (2021) PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application. Drug Deliv 28:1397–1418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun Y, Bhattacharjee A, Reynolds M, Li YV (2021) Synthesis and characterizations of gentamicin-loaded poly-lactic-co-glycolic (PLGA) nanoparticles. J Nanoparticle Res 23:155

    Article  CAS  Google Scholar 

  • Takeuchi I, Tomoda K, Hamano A, Makino KJC, Physicochemical SA, Aspects E (2017a) Effects of physicochemical properties of poly (lactide-co-glycolide) on drug release behavior of hydrophobic drug-loaded nanoparticles. Colloids Surf A 520:771–778

    Article  CAS  Google Scholar 

  • Takeuchi I, Yamaguchi S, Goto S, Makino K (2017b) Drug release behavior of hydrophobic drug-loaded poly (lactide-co-glycolide) nanoparticles: effects of glass transition temperature. Colloids Surf A 529:328–333

    Article  CAS  Google Scholar 

  • Tan Z, Liu W, Liu H, Li C, Zhang Y, Meng X, Tang T, Xi T, Xing Y (2017) Oral helicobacter pylori vaccine-encapsulated acid-resistant HP55/PLGA nanoparticles promote immune protection. Eur J Pharm Biopharm 111:33–43

    Article  PubMed  CAS  Google Scholar 

  • Tang BC, Dawson M, Lai SK, Wang YY, Suk JS, Yang M, Zeitlin P, Boyle MP, Fu J, Hanes J (2009) Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc Natl Acad Sci USA 106:19268–19273

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas C, Rawat A, Hope-Weeks L, Ahsan F (2011) Aerosolized PLA and PLGA nanoparticles enhance humoral, mucosal and cytokine responses to hepatitis B vaccine. Mol Pharm 8:405–415

    Article  PubMed  CAS  Google Scholar 

  • Tomoda K, Yabuki N, Terada H, Makino K (2014) Surfactant free preparation of PLGA nanoparticles: the combination of antisolvent diffusion with preferential solvation. Colloids Surf A 457:88–93

    Article  CAS  Google Scholar 

  • Tong G-F, Qin N, Sun L-W (2017) Development and evaluation of desvenlafaxine loaded PLGA-chitosan nanoparticles for brain delivery. Saudi Pharm J 25:844–851

    Article  PubMed  Google Scholar 

  • Torchilin V (2011) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63:131–135

    Article  PubMed  CAS  Google Scholar 

  • Touitou E, Illum L (2013) Nasal drug delivery. Drug Deliv Transl Res 3:1–3

    Article  PubMed  Google Scholar 

  • Tran P, Lee S-E, Kim D-H, Pyo Y-C, Park J-S (2020) Recent advances of nanotechnology for the delivery of anticancer drugs for breast cancer treatment. J Pharm Invest 50:261–270

    Article  CAS  Google Scholar 

  • Trivedi R, Redente EF, Thakur A, Riches DW, Kompella UB (2012) Local delivery of biodegradable pirfenidone nanoparticles ameliorates bleomycin-induced pulmonary fibrosis in mice. Nanotechnology 23:505101

    Article  PubMed  Google Scholar 

  • Venkatesh DN, Baskaran M, Karri VV, Mannemala SS, Radhakrishna K, Goti S (2015) Fabrication and in vivo evaluation of Nelfinavir loaded PLGA nanoparticles for enhancing oral bioavailability and therapeutic effect. Saudi Pharm J 23:667–674

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Helder L, Shao J, Jansen JA, Yang M, Yang F (2019) Encapsulation and release of doxycycline from electrospray-generated PLGA microspheres: effect of polymer end groups. Int J Pharm 564:1–9

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Pi C, Feng X, Hou Y, Zhao L, Wei Y (2020) The influence of nanoparticle properties on oral bioavailability of drugs. Int J Nanomed 15:6295–6310

    Article  CAS  Google Scholar 

  • Warsi MH (2021) Development and optimization of vitamin E TPGS based PLGA nanoparticles for improved and safe ocular delivery of ketorolac. J Drug Deliv Sci Technol 61:102121

    Article  CAS  Google Scholar 

  • Wei P, Xu Y, Gu Y, Yao Q, Li J, Wang L (2020) IGF-1-releasing PLGA nanoparticles modified 3D printed PCL scaffolds for cartilage tissue engineering. Drug Deliv 27:1106–1114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei P, Xu Y, Zhang H, Wang L (2021) Continued sustained insulin-releasing PLGA nanoparticles modified 3D-Printed PCL composite scaffolds for osteochondral repair. Chem Eng J 422:130051

    Article  CAS  Google Scholar 

  • Wiggins JS, Hassan MK, Mauritz KA, Storey RF (2006) Hydrolytic degradation of poly(d, l-lactide) as a function of end group: carboxylic acid vs. hydroxyl. Polymer 47:1960–1969

    Article  CAS  Google Scholar 

  • Wu L, Wu LP, Wu J, Sun J, He Z, Rodríguez-Rodríguez C, Saatchi K, Dailey LA, Häfeli UO, Cun D, Yang M (2021) Poly(lactide-co-glycolide) nanoparticles mediate sustained gene silencing and improved biocompatibility of siRNA delivery systems in mouse lungs after pulmonary administration. ACS Appl Mater Interfaces 13:3722–3737

    Article  PubMed  CAS  Google Scholar 

  • Xing Y, Zhu L, Zhang K, Li T, Huang S (2021) Nanodelivery of triamcinolone acetonide with PLGA-chitosan nanoparticles for the treatment of ocular inflammation. Artif Cells Nanomed Biotechnol 49:308–316

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Kim CS, Saylor DM, Koo D (2017) Polymer degradation and drug delivery in PLGA-based drug-polymer applications: a review of experiments and theories. J Biomed Mater Res B 105:1692–1716

    Article  CAS  Google Scholar 

  • Yadav KS, Sawant KK (2010) Modified nanoprecipitation method for preparation of cytarabine-loaded PLGA nanoparticles. AAPS PharmSciTech 11:1456–1465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang J, Sun H, Song C (2012) Preparation, characterization and in vivo evaluation of pH-sensitive oral insulin-loaded poly(lactic-co-glycolicacid) nanoparticles. Diabetes Obes Metab 14:358–364

    Article  PubMed  CAS  Google Scholar 

  • Yu T, Wang Y-Y, Yang M, Schneider C, Zhong W, Pulicare S, Choi W-J, Mert O, Fu J, Lai SK, Hanes J (2012) Biodegradable mucus-penetrating nanoparticles composed of diblock copolymers of polyethylene glycol and poly(lactic-co-glycolic acid). Drug Deliv Transl Res 2:124–128

    Article  CAS  Google Scholar 

  • Yun YH, Lee BK, Park K (2015) Controlled drug delivery: historical perspective for the next generation. J Control Release 219:2–7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeb A, Arif ST, Malik M, Shah FA, Din FU, Qureshi OS, Lee E-S, Lee G-Y, Kim J-K (2019) Potential of nanoparticulate carriers for improved drug delivery via skin. J Pharm Invest 49:485–517

    Article  Google Scholar 

  • Zeb A, Rana I, Choi HI, Lee CH, Baek SW, Lim CW, Khan N, Arif ST, Sahar NU, Alvi AM, Shah FA, Din FU, Bae ON, Park JS, Kim JK (2020) Potential and applications of nanocarriers for efficient delivery of biopharmaceuticals. Pharmaceutics 12:1184

    Article  PubMed Central  CAS  Google Scholar 

  • Zhang HY, Firempong CK, Wang YW, Xu WQ, Wang MM, Cao X, Zhu Y, Tong SS, Yu JN, Xu XM (2016) Ergosterol-loaded poly(lactide-co-glycolide) nanoparticles with enhanced in vitro antitumor activity and oral bioavailability. Acta Pharmacol Sin 37:834–844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Tao W, Chen Y, Chang D, Wang T, Zhang X, Mei L, Zeng X, Huang L (2015) Doxorubicin-loaded star-shaped copolymer PLGA-vitamin E TPGS nanoparticles for lung cancer therapy. J Mater Sci Mater Med 26:165

    Article  PubMed  Google Scholar 

  • Zhang Y, Sun C, Zhang Q, Deng Y, Hu X, Chen P (2020) Intranasal delivery of Paclitaxel encapsulated nanoparticles for brain injury due to Glioblastoma. J Appl Biomater Funct Mater 18:2280800020977170

    PubMed  Google Scholar 

  • Zhu H, Chen H, Zeng X, Wang Z, Zhang X, Wu Y, Gao Y, Zhang J, Liu K, Liu R, Cai L, Mei L, Feng SS (2014) Co-delivery of chemotherapeutic drugs with vitamin E TPGS by porous PLGA nanoparticles for enhanced chemotherapy against multi-drug resistance. Biomaterials 35:2391–2400

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2021R1F1A1060378), and Ministry of Education (NRF-2020R1A6A1A03043708). It was also supported by the Korea Drug Development Fund funded by the Ministry of Science and ICT, Ministry of Trade, Industry, and Energy, and Ministry of Health and Welfare (HN21C1258, Republic of Korea).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thi-Thao-Linh Nguyen or Han-Joo Maeng.

Ethics declarations

Conflict of interest

All authors (A. Zeb, M. Gul, T.T.L. Nguyen and H.J. Maeng) declare that they have no conflict of interest.

Statement of human and animal rights

This article does not contain any studies with human and animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeb, A., Gul, M., Nguyen, TTL. et al. Controlled release and targeted drug delivery with poly(lactic-co-glycolic acid) nanoparticles: reviewing two decades of research. J. Pharm. Investig. 52, 683–724 (2022). https://doi.org/10.1007/s40005-022-00584-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-022-00584-w

Keywords

Navigation