Skip to main content

Advertisement

Log in

Microemulsion as a promising carrier for nose to brain delivery: journey since last decade

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Background

Tight junctions and efflux transporters are two chief bodyguards of the blood–brain barrier that protect the brain and create challenges for the treatment of neurological disorders by hampering the systemic delivery of conventional therapeutics to the brain. Approaches involving drug delivery across the brain are either invasive which require disruption of barrier integrity, leading to develop the risk of neurological changes and brain abscess, or non-invasive patient friendly approach like intranasal delivery. Several investigations have strongly confirmed the direct connection between nose and brain via olfactory and trigeminal pathway which deliver neurotherapeutics directly to the brain bypassing obstructive barriers.

Area covered

Since last two decades, extensive researches are ongoing for intranasal delivery of drugs in the form of different novel colloidal carriers wherein, microemulsion with their unique composition and small globule size (< 100 nm) have shown higher efficacy in-vivo and revealed their great potential to treat severe brain disorders where rapid onset of action is needed. In this discussion, why intranasal delivery of microemulsion seems to be promising for brain targeting is the foremost focus while, the importance of delivery device for efficient brain targeting is also covered.

Expert opinion

Considering the translation of positive in-vivo outcomes further into clinical studies and humans, future direction should be aimed at evaluating the suitability of microemulsion with an efficient intranasal delivery device capable of delivering formulation into upper nasal segment. Limitations associated to intranasal delivery of microemulsion such as performing brain distribution studies in most appropriate model resembling humans, impact of diseased condition on the drug absorption and toxicity related to prolonged use, etc. must be addressed in the near future to establish a strong bench to bedside platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdelbary G, Fahmy RH (2009) Diazepam-loaded solid lipid nanoparticles: design and characterization. AAPS PharmSciTech 10(1):211–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad E, Feng Y, Qi J, Fan W, Ma Y, He H, Xia F, Dong X, Zhao W, Lu Y, Wu W (2017) Evidence of nose-to-brain delivery of nanoemulsions: cargoes but not vehicles. Nanoscale 9(3):1174–1183

    Article  CAS  PubMed  Google Scholar 

  • Ahmad N, Ahmad R, Naqvi AA, Alam MA, Ashafaq M, Abdur Rub R, Ahmad FJ (2018) Intranasal delivery of quercetin-loaded mucoadhesive nanoemulsion for treatment of cerebral ischaemia. Artif Cells Nanomed Biotechnol 46(4):717–729

    Article  CAS  PubMed  Google Scholar 

  • Alexander A, Saraf S (2018) Nose-to-brain drug delivery approach: A key to easily accessing the brain for the treatment of Alzheimer’s disease. Neural Regen Res 13(12):2102–2104

    Article  PubMed  PubMed Central  Google Scholar 

  • Asmari AKA, Ullah Z, Tariq M, Fatani A (2016) Preparation, characterization, and in vivo evaluation of intranasally administered liposomal formulation of donepezil. Drug Des Devel Ther 10:205–215

    PubMed  PubMed Central  Google Scholar 

  • Balin BJ, Broadwell RD, Salcman M, el-Kalliny M (1986) Avenues for entry of peripherally administered protein to the central nervous system in mouse, rat, and squirrel monkey. J Comp Neurol 251(2):260–280

    Article  CAS  PubMed  Google Scholar 

  • Baltzley S, Mohammad A, Malkawi AH, Al-Ghananeem AM (2014) Intranasal drug delivery of olanzapine-loaded chitosan nanoparticles. AAPS PharmSciTech 15(6):1598–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barta CA, Sachs-Barrable K, Feng F, Wasan KM (2008) Effects of monoglycerides on P-glycoprotein: modulation of the activity and expression in Caco-2 cell monolayers. Mol Pharm 5(5):863–875

    Article  CAS  PubMed  Google Scholar 

  • Bourganis V, Kammona O, Alexopoulos A, Kiparissides C (2018) Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur J Pharm Biopharm 128:337–362

    Article  CAS  PubMed  Google Scholar 

  • Brambilla M, Manenti R, de Girolamo G, Adenzato M, Bocchio-Chiavetto L, Cotelli M (2016) Effects of Intranasal Oxytocin on Long-Term Memory in Healthy Humans: A Systematic Review. Drug Dev Res 77(8):479–488

    Article  CAS  PubMed  Google Scholar 

  • Brioschi AM, Calderoni S, Zara GP, Priano L, RosaGasco M, Mauro A (2009) Solid lipid nanoparticles for brain tumors therapy: State of the art and novel challenges. S H.S. Elsevier 180:193–223

    CAS  Google Scholar 

  • Bruinsmann FA, Vaz GR, de Cristo Soares Alves A, Aguirre T, Raffin Pohlmann A, Staniscuaski Guterres S, Sonvico F (2019) Nasal Drug Delivery of Anticancer Drugs for the Treatment of Glioblastoma: Preclinical and Clinical Trials. Molecules. https://doi.org/10.3390/molecules24234312

    Article  PubMed  PubMed Central  Google Scholar 

  • Bshara H, Osman R, Mansour S, El-Shamy Ael H (2014) Chitosan and cyclodextrin in intranasal microemulsion for improved brain buspirone hydrochloride pharmacokinetics in rats. Carbohydr Polym 99:297–305

    Article  CAS  PubMed  Google Scholar 

  • Casettari L, Illum L (2014) Chitosan in nasal delivery systems for therapeutic drugs. J Control Release 190:189–200

    Article  CAS  PubMed  Google Scholar 

  • Chang J, Jallouli Y, Barras A, Dupont N, Betbeder D (2009) Chapter 1–Drug delivery to the brain using colloidal carriers. Prog Brain Res 180:2–17

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee B, Gorain B, Mohananaidu K, Sengupta P, Mandal UK, Choudhury H (2019) Targeted drug delivery to the brain via intranasal nanoemulsion: Available proof of concept and existing challenges. Int J Pharm 565:258–268

    Article  CAS  PubMed  Google Scholar 

  • Chauhan MB, Chauhan NB (2015) Brain Uptake of Neurotherapeutics after Intranasal versus Intraperitoneal Delivery in Mice. J Neurol Neurosurg 2(1):009

    Article  PubMed  PubMed Central  Google Scholar 

  • Collaborators GN (2019) Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology 18(5):459–480

    Article  Google Scholar 

  • Costantino L, Boraschi D (2012) Is there a clinical future for polymeric nanoparticles as brain-targeting drug delivery agents? Drug Discov Today 17(7–8):367–378

    Article  CAS  PubMed  Google Scholar 

  • Crowe TP, Greenlee MHW, Kanthasamy AG, Hsu WH (2018) Mechanism of intranasal drug delivery directly to the brain. Life Sci 195:44–52

    Article  CAS  PubMed  Google Scholar 

  • Deli MA (2009) Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. Biochim Biophys Acta 1788(4):892–910

    Article  CAS  PubMed  Google Scholar 

  • Dey S, Mahanti B, Mazumder B, Dasgupta S (2011) nasal drug delivery: an approach of drug delivery through nasal route. Der Pharmacia Sinica 2(3):94–106

    CAS  Google Scholar 

  • Djupesland PG, Skretting A, Winderen M, Holand T (2004) Bi-directional nasal delivery of aerosols can prevent lung deposition. J Aerosol Med 17(3):249–259

    Article  CAS  PubMed  Google Scholar 

  • Djupesland PG, Skretting A, Winderen M, Holand T (2006) Breath actuated device improves delivery to target sites beyond the nasal valve. Laryngoscope 116(3):466–472

    Article  PubMed  Google Scholar 

  • Djupesland PG, Messina JC, Mahmoud RA (2014) The nasal approach to delivering treatment for brain diseases: an anatomic, physiologic, and delivery technology overview. Ther Deliv 5(6):709–733

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Ke X, Liao Z (2011) The microstructure characterization of meloxicam microemulsion and its influence on the solubilization capacity. Drug Dev Ind Pharm 37(8):894–900

    Article  CAS  PubMed  Google Scholar 

  • Dora CL, Silva LF, Costa T, Mónika P, Silva S, Antonio M, Senna L, Elenara, (2011) Formulation study of quercetin-loaded lipid-based nanocarriers obtained by hot solvent diffusion method. Lat Am J Pharm 30(2):289–296

    CAS  Google Scholar 

  • Erdo F, Bors LA, Farkas D, Bajza A, Gizurarson S (2018) Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull 143:155–170

    Article  CAS  PubMed  Google Scholar 

  • Espinoza LC, Vacacela M, Clares B, Garcia ML, Fabrega MJ, Calpena AC (2018) Development of a Nasal Donepezil-loaded Microemulsion for the Treatment of Alzheimer’s Disease: in vitro and ex vivo Characterization. CNS Neurol Disord Drug Targets 17(1):43–53

    Article  CAS  PubMed  Google Scholar 

  • Fanun M (2009) Oil type effect on diclofenac solubilization in mixed nonionic surfactants microemulsions. Colloids Surf, A 343(1–3):75–82

    Article  CAS  Google Scholar 

  • Fanun M (2012) Microemulsions as delivery systems. Curr Opin Colloid Interface Sci 17(5):306–313

    Article  CAS  Google Scholar 

  • Fazil M, Md S, Haque S, Kumar M, Baboota S, Sahni JK, Ali J (2012) Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur J Pharm Sci 47(1):6–15

    Article  CAS  PubMed  Google Scholar 

  • Florence K, Manisha L, Kumar BA, Ankur K, Kumar MA, Ambikanandan M (2011) Intranasal clobazam delivery in the treatment of status epilepticus. J Pharm Sci 100(2):692–703

    Article  CAS  PubMed  Google Scholar 

  • WH Frey 1997 Methods of administering neurologic agents to the brain United states Ramsey foundation US 5 624 898

  • Furlanetto S, Cirri M, Piepel G, Mennini N, Mura P (2011) Mixture experiment methods in the development and optimization of microemulsion formulations. J Pharm Biomed Anal 55(4):610–617

    Article  CAS  PubMed  Google Scholar 

  • Gadhave D, Gorain B, Tagalpallewar A, Kokare C (2019) Intranasal teriflunomide microemulsion: An improved chemotherapeutic approach in glioblastoma. Journal of Drug Delivery Science and Technology 51:276–289

    Article  CAS  Google Scholar 

  • Ganger S, Schindowski K (2018) Tailoring Formulations for Intranasal Nose-to-Brain Delivery: A Review on Architecture, Physico-Chemical Characteristics and Mucociliary Clearance of the Nasal Olfactory Mucosa. Pharmaceutics. https://doi.org/10.3390/pharmaceutics10030116

    Article  PubMed  PubMed Central  Google Scholar 

  • Gartziandia O, Egusquiaguirre SP, Bianco J, Pedraz JL, Igartua M, Hernandez RM, Preat V, Beloqui A (2016) Nanoparticle transport across in vitro olfactory cell monolayers. Int J Pharm 499(1–2):81–89

    Article  CAS  PubMed  Google Scholar 

  • Ge X, Wei M, He S, Yuan WE (2019) Advances of Non-Ionic Surfactant Vesicles (Niosomes) and Their Application in Drug Delivery. Pharmaceutics. https://doi.org/10.3390/pharmaceutics11020055

    Article  PubMed  PubMed Central  Google Scholar 

  • Graff CL, Pollack GM (2003) P-Glycoprotein attenuates brain uptake of substrates after nasal instillation. Pharm Res 20(8):1225–1230

    Article  CAS  PubMed  Google Scholar 

  • Graff CL, Pollack GM (2005a) Nasal drug administration: potential for targeted central nervous system delivery. J Pharm Sci 94(6):1187–1195

    Article  CAS  PubMed  Google Scholar 

  • Graff CL, Pollack GM (2005b) Functional evidence for P-glycoprotein at the nose-brain barrier. Pharm Res 22(1):86–93

    Article  CAS  PubMed  Google Scholar 

  • Harush-Frenkel O, Rozentur E, Benita S, Altschuler Y (2008) Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized MDCK cells. Biomacromol 9(2):435–443

    Article  CAS  Google Scholar 

  • He CX, He ZG, Gao JQ (2010) Microemulsions as drug delivery systems to improve the solubility and the bioavailability of poorly water-soluble drugs. Expert Opin Drug Deliv 7(4):445–460

    Article  CAS  PubMed  Google Scholar 

  • Hellweg T (2002) Phase structures of microemulsions. Curr Opin Colloid Interface Sci 7(1–2):50–56

    Article  CAS  Google Scholar 

  • Hetal P, Thakkar AAP, Chauhan NP (2014) Intranasal mucoadhesive microemulsion of mirtazapine: pharmacokinetic and pharmacodynamic studies. Asian journal of pharmaceutics 7(1):36–42

    Google Scholar 

  • Hoekman JD, Ho RJ (2011) Enhanced analgesic responses after preferential delivery of morphine and fentanyl to the olfactory epithelium in rats. Anesth Analg 113(3):641–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoekman J BA, Hite M (2013) "SPECT imaging of direct nose‐to‐brain transfer of MAG‐3 in man." American Association of Pharmaceutical Scientists Annual Meeting.

  • Hu L, Wu H, Niu F, Yan C, Yang X, Jia Y (2011) Design of fenofibrate microemulsion for improved bioavailability. Int J Pharm 420(2):251–255

    Article  CAS  PubMed  Google Scholar 

  • Illum L (2000) Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci 11(1):1–18

    Article  CAS  PubMed  Google Scholar 

  • Illum L (2004) Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol 56(1):3–17

    Article  CAS  PubMed  Google Scholar 

  • Illum L (2012) Nasal drug delivery - recent developments and future prospects. J Control Release 161(2):254–263

    Article  CAS  PubMed  Google Scholar 

  • Jadhav KR, Gambhire MN, Shaikh IM, Vilarsrao K, Pisal SS (2007) Nasal Drug Delivery System-Factors Affecting and Applications. Current Drug Therapy 2(1):27–38

    Article  CAS  Google Scholar 

  • Jain A, Jain S (2019) Formulations and evaluations of Intranasal Nose to Brain Delivery of Curcumin with resveratrol Nanoparticle for treatment of Parkisonism. International Congress Movement Disorder. https://doi.org/10.1002/mds.27795

    Article  Google Scholar 

  • Joseph E, Reddi S, Rinwa V, Balwani G, Saha R (2017) Design and in vivo evaluation of solid lipid nanoparticulate systems of Olanzapine for acute phase schizophrenia treatment: Investigations on antipsychotic potential and adverse effects. Eur J Pharm Sci 104:315–325

    Article  CAS  PubMed  Google Scholar 

  • Kang YJ, Cutler EG, Cho H (2018) Therapeutic nanoplatforms and delivery strategies for neurological disorders. Nano Converg 5(1):35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karasulu HY (2008) Microemulsions as novel drug carriers: the formation, stability, applications and toxicity. Expert Opin Drug Deliv 5(1):119–135

    Article  CAS  PubMed  Google Scholar 

  • Khan AR, Liu M, Khan MW, Zhai G (2017) Progress in brain targeting drug delivery system by nasal route. J Control Release 268:364–389

    Article  CAS  PubMed  Google Scholar 

  • Khunt D, Shah B, Misra M (2017) Role of butter oil in brain targeted delivery of Quetiapine fumarate microemulsion via intranasal route. Journal of Drug Delivery Science and Technology 40:11–20

    Article  CAS  Google Scholar 

  • Kogan A, Aserin A, Garti N (2007) Improved solubilization of carbamazepine and structural transitions in nonionic microemulsions upon aqueous phase dilution. J Colloid Interface Sci 315(2):637–647

    Article  CAS  PubMed  Google Scholar 

  • Kokare C, Koli D, Gadhave D, Mote C, Khandekar G (2020) Efavirenz-loaded intranasal microemulsion for crossing blood-CNS interfaces in neuronal-AIDS: pharmacokinetic and in vivo safety evaluation. Pharm Dev Technol 25(1):28–39

    Article  CAS  PubMed  Google Scholar 

  • Krishan M, Gudelsky GA, Desai PB, Genter MB (2014) Manipulation of olfactory tight junctions using papaverine to enhance intranasal delivery of gemcitabine to the brain. Drug Deliv 21(1):8–16

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Misra A, Babbar AK, Mishra AK, Mishra P, Pathak K (2008a) Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int J Pharm 358(1–2):285–291

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Misra A, Mishra AK, Mishra P, Pathak K (2008b) Mucoadhesive nanoemulsion-based intranasal drug delivery system of olanzapine for brain targeting. J Drug Target 16(10):806–814

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Pathak K, Misra A (2009) Formulation and characterization of nanoemulsion-based drug delivery system of risperidone. Drug Dev Ind Pharm 35(4):387–395

    Article  CAS  PubMed  Google Scholar 

  • Lee VHL, Yamamoto A (1989) Penetration and enzymatic barriers to peptide and protein absorption. Adv Drug Deliv Rev 4(2):171–207

    Article  Google Scholar 

  • Li L, Nandi I, Kim KH (2002) Development of an ethyl laurate-based microemulsion for rapid-onset intranasal delivery of diazepam. Int J Pharm 237(1–2):77–85

    Article  CAS  PubMed  Google Scholar 

  • Li JC, Zhang WJ, Zhu JX, Zhu N, Zhang HM, Wang X, Zhang J, Wang QQ (2015) Preparation and brain delivery of nasal solid lipid nanoparticles of quetiapine fumarate in situ gel in rat model of schizophrenia. Int J Clin Exp Med 8(10):17590–17600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin H, Gebhardt M, Bian S, Kwon KA, Shim CK, Chung SJ, Kim DD (2007) Enhancing effect of surfactants on fexofenadine.HCl transport across the human nasal epithelial cell monolayer. Int J Pharm 330(1–2):23–31

    Article  CAS  PubMed  Google Scholar 

  • Liwarska-Bizukojc E, Miksch K, Malachowska-Jutsz A, Kalka J (2005) Acute toxicity and genotoxicity of five selected anionic and nonionic surfactants. Chemosphere 58(9):1249–1253

    Article  CAS  PubMed  Google Scholar 

  • Lochhead JJ, Thorne RG (2012) Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 64(7):614–628

    Article  CAS  PubMed  Google Scholar 

  • Lochhead JJ, Wolak DJ, Pizzo ME, Thorne RG (2015) Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J Cereb Blood Flow Metab 35(3):371–381

    Article  CAS  PubMed  Google Scholar 

  • Lopes LB (2014) Overcoming the cutaneous barrier with microemulsions. Pharmaceutics 6(1):52–77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Madane RG, Mahajan HS (2016) Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: design, characterization, and in vivo study. Drug Deliv 23(4):1326–1334

    Article  CAS  PubMed  Google Scholar 

  • Mahajan HS, Mahajan MS, Nerkar PP, Agrawal A (2014) Nanoemulsion-based intranasal drug delivery system of saquinavir mesylate for brain targeting. Drug Deliv 21(2):148–154

    Article  CAS  PubMed  Google Scholar 

  • Mandal S, Mandal SD, Chuttani K, Sawant KK, Subudhi BB (2016) Design and evaluation of mucoadhesive microemulsion for neuroprotective effect of ibuprofen following intranasal route in the MPTP mice model. Drug Dev Ind Pharm 42(8):1340–1350

    Article  CAS  PubMed  Google Scholar 

  • Mather M, Jacobsen la, Jarosz B, Kilduff l, Lee A, Pollard Km, Scommegna p and Vanorman A (2019). "America’s Changing Population." Population Bulletin.

  • McMartin C, Hutchinson LE, Hyde R, Peters GE (1987) Analysis of structural requirements for the absorption of drugs and macromolecules from the nasal cavity. J Pharm Sci 76(7):535–540

    Article  CAS  PubMed  Google Scholar 

  • Mehta AK, Yadav KS, Sawant KK (2007) Nimodipine loaded PLGA nanoparticles: formulation optimization using factorial design, characterization and in vitro evaluation. Curr Drug Deliv 4(3):185–193

    Article  CAS  PubMed  Google Scholar 

  • Mena-Hernandez J, Jung-Cook H, Llaguno-Munive M, Garcia-Lopez P, Ganem-Rondero A, Lopez-Ramirez S, Barragan-Aroche F, Rivera-Huerta M, Mayet-Cruz L (2020) Preparation and Evaluation of Mebendazole Microemulsion for Intranasal Delivery: an Alternative Approach for Glioblastoma Treatment. AAPS PharmSciTech 21(7):264

    Article  CAS  PubMed  Google Scholar 

  • Mistry A, Stolnik S, Illum L (2009) Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm 379(1):146–157

    Article  CAS  PubMed  Google Scholar 

  • Mittal D, Ali A, Md S, Baboota S, Sahni JK, Ali J (2014) Insights into direct nose to brain delivery: current status and future perspective. Drug Deliv 21(2):75–86

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto M, Natsume H, Satoh I, Ohtake K, Yamaguchi M, Kobayashi D, Sugibayashi K, Morimoto Y (2001) Effect of poly-L-arginine on the nasal absorption of FITC-dextran of different molecular weights and recombinant human granulocyte colony-stimulating factor (rhG-CSF) in rats. Int J Pharm 226(1–2):127–138

    Article  CAS  PubMed  Google Scholar 

  • Moran DT, Rowley JC 3rd, Jafek BW, Lovell MA (1982) The fine structure of the olfactory mucosa in man. J Neurocytol 11(5):721–746

    Article  CAS  PubMed  Google Scholar 

  • Mustafa G, Baboota S, Ahuja A, Ali J (2012) Formulation Development of Chitosan Coated Intra Nasal Ropinirole Nanoemulsion for Better Management Option of Parkinson: An In Vitro Ex Vivo Evaluation. Curr Nanosci 8(3):348–360

    Article  CAS  Google Scholar 

  • Narayan R, Singh M, Ranjan O, Nayak Y, Garg S, Shavi GV, Nayak UY (2016) Development of risperidone liposomes for brain targeting through intranasal route. Life Sci 163:38–45

    Article  CAS  PubMed  Google Scholar 

  • Negi LM, Tariq M, Talegaonkar S (2013) Nano scale self-emulsifying oil based carrier system for improved oral bioavailability of camptothecin derivative by P-Glycoprotein modulation. Colloids Surf B Biointerfaces 111:346–353

    Article  CAS  PubMed  Google Scholar 

  • Neuropharma I. (2013). "Impel NeuroPharma, Inc. SPECT Imaging of Direct Nose-to-Brain Transfer of MAG-3 in Man."

  • NeuroPharma I. (2018). "Impel NeuroPharma Announces FDA Clearance of IND for Pivotal Phase 3 Study of INP104 for Acute Treatment of Migraine." from https://impelnp.com/2018/06/22/impel-neuropharma-announces-fda-clearance-of-ind-for-pivotal-phase-3-study-of-inp104-for-acute-treatment-of-migraine/.

  • NeuroPharma I. (2018). "Impel NeuroPharma Announces First Patient Dosed in Phase 3 Trial Evaluating INP104 for the Treatment of Acute Migraine Headache." from https://impelnp.com/2018/08/22/impel-neuropharma-announces-first-patient-dosed-in-phase-3-trial-evaluating-inp104-for-the-treatment-of-acute-migraine-headache/.

  • Pandey V, Gadeval A, Asati S, Jain P, Jain N, Roy RK, Soni V, Tekade RK (2020) Formulation strategies for nose-to- brain delivery of therapeutic molecules. In: Tekade RK (ed) Drug Delivery Systems Advances in Pharmaceutical Product Development and Research. Elsevier, Amsterdam, pp 291–332

    Chapter  Google Scholar 

  • Pardeshi CV, Belgamwar VS (2013) Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier: an excellent platform for brain targeting. Expert Opin Drug Deliv 10(7):957–972

    Article  CAS  PubMed  Google Scholar 

  • Pardeshi CV, Rajput PV, Belgamwar VS, Tekade AR, Surana SJ (2013) Novel surface modified solid lipid nanoparticles as intranasal carriers for ropinirole hydrochloride: application of factorial design approach. Drug Deliv 20(1):47–56

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (2007) Blood-brain barrier delivery. Drug Discov Today 12(1–2):54–61

    Article  CAS  PubMed  Google Scholar 

  • Pasha S, Gupta K (2010) Various drug delivery approaches to the central nervous system. Expert Opin Drug Deliv 7(1):113–135

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Chavhan S, Soni H, Babbar AK, Mathur R, Mishra AK, Sawant K (2011) Brain targeting of risperidone-loaded solid lipid nanoparticles by intranasal route. J Drug Target 19(6):468–474

    Article  CAS  PubMed  Google Scholar 

  • Patel RB, Patel MR, Bhatt KK, Patel BG, Gaikwad RV (2016) Microemulsion-based drug delivery system for transnasal delivery of Carbamazepine: preliminary brain-targeting study. Drug Deliv 23(1):207–213

    Article  CAS  PubMed  Google Scholar 

  • Patel RB, Patel MR, Bhatt KK, Patel BG, Gaikwad RV (2016) Evaluation of brain targeting efficiency of intranasal microemulsion containing olanzapine: pharmacodynamic and pharmacokinetic consideration. Drug Deliv 23(1):307–315

    Article  CAS  PubMed  Google Scholar 

  • Patil G, Surana SJ (2013) Fabrication and statistical optimization of surface engineered PLGA nanoparticles for naso-brain delivery of ropinirole hydrochloride: in-vitro-ex-vivo studies. J Biomater Sci Polym Ed 24(15):1740–1756

    Article  CAS  PubMed  Google Scholar 

  • Piao HM, Balakrishnan P, Cho HJ, Kim H, Kim YS, Chung SJ, Shim CK, Kim DD (2010) Preparation and evaluation of fexofenadine microemulsion for intranasal delivery. Int J Pharm. https://doi.org/10.1016/j.ijpharm.2010.05.041

    Article  PubMed  PubMed Central  Google Scholar 

  • Pires A, Fortuna A, Alves G, Falcao A (2009) Intranasal drug delivery: how, why and what for? J Pharm Pharm Sci 12(3):288–311

    Article  CAS  PubMed  Google Scholar 

  • Pollard J, Rajabi-Siahboomi A, Badhan RKS, Mohammed AR, Perrie Y (2019) High-throughput screening of excipients with a biological effect: a kinetic study on the effects of surfactants on efflux-mediated transport. J Pharm Pharmacol 71(6):889–897

    Article  CAS  PubMed  Google Scholar 

  • Pouton CW (1997) Formulation of self-emulsifying drug delivery systems. Adv Drug Deliv Rev 25(1):47–58

    Article  CAS  Google Scholar 

  • Praveen Kumar PR (2011) Nonionic surfactant vesicular systems for effective drug delivery—An overview. Acta Pharmaceutica Sinica B 1(4):208–219

    Article  CAS  Google Scholar 

  • Ramreddy S, Janapareddi K (2019) Brain targeting of chitosan-based diazepam mucoadhesive microemulsions via nasal route: formulation optimization, characterization, pharmacokinetic and pharmacodynamic evaluation. Drug Dev Ind Pharm 45(1):147–158

    Article  CAS  PubMed  Google Scholar 

  • Rejman J, Oberle V, Zuhorn IS, Hoekstra D (2004) Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J 377(Pt 1):159–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saeedi M, Eslamifar M, Khezri K, Dizaj SM (2019) Applications of nanotechnology in drug delivery to the central nervous system. Biomed Pharmacother 111:666–675

    Article  CAS  PubMed  Google Scholar 

  • Salama HA, Mahmoud AA, Kamel AO, Abdel Hady M, Awad GA (2012) Brain delivery of olanzapine by intranasal administration of transfersomal vesicles. J Liposome Res 22(4):336–345

    Article  CAS  PubMed  Google Scholar 

  • Samudre S, Tekade A, Thorve K, Jamodkar A, Parashar G (2016) Xanthan Gum Coated Mucoadhesive Liposomes for Efficient Nose to Brain Delivery of Curcumin. Drug Delivery Letter 5(3):201–207

    Article  CAS  Google Scholar 

  • Schaefer ML, Bottger B, Silver WL, Finger TE (2002) Trigeminal collaterals in the nasal epithelium and olfactory bulb: a potential route for direct modulation of olfactory information by trigeminal stimuli. J Comp Neurol 444(3):221–226

    Article  PubMed  Google Scholar 

  • Shadab Md, Ali Mushir, Bhatnagar Aseem, Baboota Sanjula, Sahni Jasjeet, Kaur; Ali, Javed, (2014) Design, Development, Optimization and Characterization of Donepezil Loaded Chitosan Nanoparticles for Brain Targeting to Treat Alzheimer’s Disease. Science of Advanced Materials 6(4):720–735

    Article  CAS  Google Scholar 

  • Shadab M, Subrat KB, Farrukh Z, Naiyer S, Md A, VenkataSrikanth M (2018) Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. Journal of Drug Delivery Science and Technology 43:295–310

    Article  CAS  Google Scholar 

  • Shafir Botner AF, Sintov AC (2012) Direct Delivery of Intranasal Insulin to the Brain via Microemulsion as a Putative Treatment of CNS Functioning Disorders. Journal of Nanomedicine & Nanotechnology 3:1–6

    Google Scholar 

  • Shah BM, Misra M, Shishoo CJ, Padh H (2015) Nose to brain microemulsion-based drug delivery system of rivastigmine: formulation and ex-vivo characterization. Drug Deliv 22(7):918–930

    Article  CAS  PubMed  Google Scholar 

  • Shah B, Khunt D, Bhatt H, Misra M, Padh H (2015) Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: Effect on formulation and characterization parameters. Eur J Pharm Sci 78:54–66

    Article  CAS  PubMed  Google Scholar 

  • Shah BM, Khunt D, Bhatt H, Misra M, Padh H (2016) Intranasal delivery of venlafaxine loaded nanostructured lipid carrier: Risk assessment and QbD based optimization. J Drug Deliv Sci Technol 33:37–50

    Article  CAS  Google Scholar 

  • Shah B, Khunt D, Misra M, Padh H (2016) Non-invasive intranasal delivery of quetiapine fumarate loaded microemulsion for brain targeting: Formulation, physicochemical and pharmacokinetic consideration. Eur J Pharm Sci 91:196–207

    Article  CAS  PubMed  Google Scholar 

  • Shah B, Khunt D, Misra M, Padh H (2016) "Application of Box-Behnken design for optimization and development of quetiapine fumarate loaded chitosan nanoparticles for brain delivery via intranasal route* ". Int J Biol Macromol 89:206–218

    Article  CAS  PubMed  Google Scholar 

  • Shah B, Khunt D, Misra M, Padh H (2018) Formulation and In-vivo Pharmacokinetic Consideration of Intranasal Microemulsion and Mucoadhesive Microemulsion of Rivastigmine for Brain Targeting. Pharm Res 35(1):8

    Article  PubMed  CAS  Google Scholar 

  • Shah B, Khunt D, Misra M (2021) Comparative evaluation of intranasally delivered quetiapine loaded mucoadhesive microemulsion and polymeric nanoparticles for brain targeting: pharmacokinetic and gamma scintigraphy studies. Futur J Pharm Sci 7(6):1–12

    Google Scholar 

  • Sharma D, Sharma RK, Sharma N, Gabrani R, Sharma SK, Ali J, Dang S (2015) Nose-To-Brain Delivery of PLGA-Diazepam Nanoparticles. AAPS PharmSciTech 16(5):1108–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinde RL, Devarajan PV (2017) Docosahexaenoic acid-mediated, targeted and sustained brain delivery of curcumin microemulsion. Drug Deliv 24(1):152–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinde RL, Jindal AB, Devarajan PV (2011) Microemulsions and Nanoemulsions for Targeted Drug Delivery to the Brain. Curr Nanosci 7(1):119–133

    Article  CAS  Google Scholar 

  • Shinde RL, Bharkad GP, Devarajan PV (2015) Intranasal microemulsion for targeted nose to brain delivery in neurocysticercosis: Role of docosahexaenoic acid. Eur J Pharm Biopharm 96:363–379

    Article  CAS  PubMed  Google Scholar 

  • Sindhu P, Kumar S, Iqbal B, Ali J, Baboota S (2018) Duloxetine loaded-microemulsion system to improve behavioral activities by upregulating serotonin and norepinephrine in brain for the treatment of depression. J Psychiatr Res 99:83–95

    Article  PubMed  Google Scholar 

  • Singh S, Muthu MS (2007) Preparation and characterization of nanoparticles containing an atypical antipsychotic agent. Nanomedicine (Lond) 2(2):233–240

    Article  Google Scholar 

  • Talegaonkar S, Azeem A, Ahmad FJ, Khar RK, Pathan SA, Khan ZI (2008) Microemulsions: a novel approach to enhanced drug delivery. Recent Pat Drug Deliv Formul 2(3):238–257

    Article  CAS  PubMed  Google Scholar 

  • Thorne RG, Pronk GJ, Padmanabhan V, Frey WH 2nd (2004) Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 127(2):481–496

    Article  CAS  PubMed  Google Scholar 

  • Touitou E, Illum L (2013) Nasal drug delivery. Drug Deliv Transl Res 3(1):1–3

    Article  PubMed  Google Scholar 

  • Trows S, Wuchner K, Spycher R, Steckel H (2014) Analytical challenges and regulatory requirements for nasal drug products in europe and the u.s. Pharmaceutics 6(2):195–219

    Article  PubMed  PubMed Central  Google Scholar 

  • Upadhyay P, Trivedi J, Pundarikakshudu K, Sheth N (2016) Comparative study between simple and optimized liposomal dispersion of quetiapine fumarate for diffusion through nasal route. Drug Deliv 23(4):1214–1221

    Article  CAS  PubMed  Google Scholar 

  • Vyas TK, Babbar AK, Sharma RK, Misra A (2005) Intranasal mucoadhesive microemulsions of zolmitriptan: preliminary studies on brain-targeting. J Drug Target 13(5):317–324

    Article  CAS  PubMed  Google Scholar 

  • Vyas TK, Babbar AK, Sharma RK, Singh S, Misra A (2006) Intranasal mucoadhesive microemulsions of clonazepam: preliminary studies on brain targeting. J Pharm Sci 95(3):570–580

    Article  CAS  PubMed  Google Scholar 

  • Vyas TK, Babbar AK, Sharma RK, Singh S, Misra A (2006) Preliminary brain-targeting studies on intranasal mucoadhesive microemulsions of sumatriptan. AAPS PharmSciTech 7(1):E49–E57

    Article  PubMed  PubMed Central  Google Scholar 

  • Vyas TK, Shahiwala A, Amiji MM (2008) Improved oral bioavailability and brain transport of Saquinavir upon administration in novel nanoemulsion formulations. Int J Pharm 347(1–2):93–101

    Article  CAS  PubMed  Google Scholar 

  • Washington N, Steele RJ, Jackson SJ, Bush D, Mason J, Gill DA, Pitt K, Rawlins DA (2000) Determination of baseline human nasal pH and the effect of intranasally administered buffers. Int J Pharm 198(2):139–146

    Article  CAS  PubMed  Google Scholar 

  • Wavikar PR, Vavia PR (2015) Rivastigmine-loaded in situ gelling nanostructured lipid carriers for nose to brain delivery. J Liposome Res 25(2):141–149

    Article  CAS  PubMed  Google Scholar 

  • Yang ZZ, Zhang YQ, Wang ZZ, Wu K, Lou JN, Qi XR (2013) Enhanced brain distribution and pharmacodynamics of rivastigmine by liposomes following intranasal administration. Int J Pharm 452(1–2):344–354

    Article  CAS  PubMed  Google Scholar 

  • Yasir M, Sara UVS, Chauhan I, Gaur PK, Singh AP, Puri D, Ameeduzzafar, (2018) Solid lipid nanoparticles for nose to brain delivery of donepezil: formulation, optimization by Box-Behnken design, in vitro and in vivo evaluation. Artificial Cells, Nanomedicine, and Biotechnology 46(8):1838–1851

    CAS  Google Scholar 

  • Yeh TH, Hsu LW, Tseng MT, Lee PL, Sonjae K, Ho YC, Sung HW (2011) Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials 32(26):6164–6173

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Lee TR (2013) Contact Angle and Wetting Properties. Springer, Berlin

    Book  Google Scholar 

  • Zhang SSY (2016) Medical Big Data: Neurological Diseases Diagnosis Through Medical Data Analysis. Data Science and Engineering 1:54–64

    Article  Google Scholar 

  • Zhang Q, Jiang X, Jiang W, Lu W, Su L, Shi Z (2004) Preparation of nimodipine-loaded microemulsion for intranasal delivery and evaluation on the targeting efficiency to the brain. Int J Pharm 275(1–2):85–96

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Zhang J, Hu H, Qiao M, Chen D, Zhao X, Yang C (2018) Design of lactoferrin modified lipid nano-carriers for efficient brain-targeted delivery of nimodipine. Mater Sci Eng C Mater Biol Appl 92:1031–1040

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brijesh Shah.

Ethics declarations

Conflict of interest

The author (B. Shah) report no conflict of interest. The author alone are responsible for the content and writing of paper.

Statement of animal rights and ethical approval

This article does not contain any studies with human and animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, B. Microemulsion as a promising carrier for nose to brain delivery: journey since last decade. J. Pharm. Investig. 51, 611–634 (2021). https://doi.org/10.1007/s40005-021-00528-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-021-00528-w

Keywords

Navigation