Skip to main content

Advertisement

Log in

Genexpressionsprofile in der onkologischen Diagnostik

Gene expression profiling in cancer diagnostics

  • REVIEW
  • Published:
Onkopipeline

Zusammenfassung

Tumorerkrankungen stellen in Deutschland nach wie vor die zweithäufigste Tordesursache dar. Neben der Entwicklung wirksamer primärer und sekundärer Präventionsmaßnahmen sind vor allem Methoden zur Verbesserung der Diagnose und Subklassifikation sowie zur Prognoseeinschätzung der einzelnen Tumorentitäten dazu geeignet, die krebsbedingte Letalität langfristig zu senken. Die klassische Diagnose eines Tumors stützt sich vielfach auf seine histomorphologische Charakterisierung, wohingegen die prognostische Einschätzung zusätzlich durch das Stadium der Erkrankung bei Diagnose bestimmt wird. Nach der Etablierung von Hochdurchsatzmethoden zur Erstellung von Genexpressionsprofilen von Tumorbiopsien wurde im vergangenen Jahrzehnt untersucht, ob die molekulare Charakterisierung von Tumoren die diagnostische Sicherheit zusätzlich erhöhen und die Einschätzung der Prognose verbessern kann. Hierzu wurden vor allem Studien beim Mamma-, Lungen- und Kolonkarzinom durchgeführt mit dem Ziel, in der adjuvanten Situation bei Vorliegen eines frühen Stadiums feststellen zu können, welche Patientenkollektive tatsächlich von einer Chemotherapie profitieren würden. Ferner wurden Genexpressionsprofile dazu genutzt, Tumoren mit unklarem Primarius ihrem Ursprungsgewebe zuzuordnen. Darüber hinaus wurde mittels Genexpressionsanalyse eine ergänzende molekulare Klassifikation sowohl von B-Zell-Non-Hodgkin-Lymphomen als auch von lymphatischen und myeloischen Leukämien ermöglicht, wodurch möglicherweise sowohl die Diagnostik als auch die Einschätzung der Prognose dieser Erkrankungen langfristig verbessert werden können. Obwohl mittlerweile zahlreiche Signaturen und Prädiktoren zu einzelnen Neoplasien veröffentlicht wurden, fand in Deutschland bisher keiner der Tests Eingang in die leitlinienbasierte Diagnostik und Therapie einer malignen Erkrankung. Dies ist vor allem darauf zurückzuführen, dass die vielversprechenden Ergebnisse zunächst in großen prospektiven klinischen Studien evaluiert werden müssen. Erst nach Abschluss dieser Studien wird zu entscheiden sein, ob und welche Testverfahren tatsächlich geeignet sind, den Verlauf einer bestimmten Tumorerkrankung signifikant zu verbessern.

Abstract

Cancer still represents the second leading cause of death in Germany. Besides the strengthening of primary and secondary tumor prevention, also the improvement of diagnosis, subclassification and assessment of prognosis will be necessary for lowering the mortality of certain tumor entities. Cancer diagnosis is often based on histological characterization of tumor biopsy material, while the stage of disease strongly influences the prognosis of an individual patient. With the development of high-throughput technologies to perform gene expression profiling during the last decade, multiple clinical trials assessed the value of gene expression profiling for molecular characterization of cancer as well as its impact on diagnosis and prognosis of disease. Mainly in breast, lung, and colon cancer, gene expression profiling was performed to investigate which patients in early-stage disease might benefit from adjuvant chemotherapy after complete tumor resection. Gene expression profiling was also used to determine the primary tissue of cancer of unknown primary. Moreover, gene expression profiling was performed to further classify B cell non-Hodgkin’s lymphoma and also leukemia in order to improve diagnosis as well as the therapeutic options due to the development of novel prognostic markers. Although numerous tumor-specific signatures and prognostic predictors were established in these studies, none has been implemented in the German guideline-based therapeutic decision tree for any of these tumor entities. This is mainly due to the lack of appropriate validation trials, which are urgently needed to introduce this promising technology into routine clinical practice to improve diagnosis and prognosis of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Abbruzzese JL, Abbruzzese MC, Lenzi R, et al. Analysis of a diagnostic strategy for patients with suspected tumors of unknown origin. J Clin Oncol 1995;13:2094–103.

    PubMed  CAS  Google Scholar 

  2. Alizadeh A, Eisen M, Davis RE, et al. The lymphochip: a specialized cDNA microarray for the genomic-scale analysis of gene expression in normal and malignant lymphocytes. Cold Spring Harb Symp Quant Biol 1999;64:71–8.

    Article  PubMed  CAS  Google Scholar 

  3. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000;403:503–11.

    Article  PubMed  CAS  Google Scholar 

  4. Andre T, Quinaux E, Louvet C, et al. Phase III study comparing a semimonthly with a monthly regimen of fluorouracil and leucovorin as adjuvant treatment for stage II and III colon cancer patients: final results of GERCOR C96.1. J Clin Oncol 2007; 25:3732–8.

    Article  PubMed  CAS  Google Scholar 

  5. Beer DG, Kardia SL, Huang CC, et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 2002;8:816–24.

    PubMed  CAS  Google Scholar 

  6. Bhattacharjee A, Richards WG, Staunton J, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci U S A 2001;98:13790–5.

    Article  PubMed  CAS  Google Scholar 

  7. Bird CP, Stranger BE, Dermitzakis ET. Functional variation and evolution of non-coding DNA. Curr Opin Genet Dev 2006;16:559–64.

    Article  PubMed  CAS  Google Scholar 

  8. Briasoulis E, Pavlidis N. Cancer of unknown primary origin. Oncologist 1997;2:142–52.

    PubMed  Google Scholar 

  9. Bueno-de-Mesquita JM, Linn SC, Keijzer R, et al. Validation of 70-gene prognosis signature in node-negative breast cancer. Breast Cancer Res Treat 2009;in press (Epub 2008 sep 26).

  10. Bueno-de-Mesquita JM, van Harten WH, Retel VP, et al. Use of 70-gene signature to predict prognosis of patients with node-negative breast cancer: a prospective community-based feasibility study (RASTER). Lancet Oncol 2007;8:1079–87.

    Article  PubMed  CAS  Google Scholar 

  11. Bullinger L, Dohner K, Bair E, et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 2004;350:1605–16.

    Article  PubMed  CAS  Google Scholar 

  12. Buyse M, Loi S, van’t Veer L, et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 2006;98:1183–92.

    Article  PubMed  CAS  Google Scholar 

  13. The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008;455:1061–8.

    Article  CAS  Google Scholar 

  14. Cardoso F, Van’t Veer L, Rutgers E, et al. Clinical application of the 70-gene profile: the MINDACT trial. J Clin Oncol 2008;26:729–35.

    Article  PubMed  Google Scholar 

  15. Chen HY, Yu SL, Chen CH, et al. A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med 2007;356:11–20.

    Article  PubMed  CAS  Google Scholar 

  16. Chen JJ, Peck K, Hong TM, et al. Global analysis of gene expression in invasion by a lung cancer model. Cancer Res 2001;61:5223–30.

    PubMed  CAS  Google Scholar 

  17. Cobb J, Busst C, Petrou S, et al. Searching for functional genetic variants in non-coding DNA. Clin Exp Pharmacol Physiol 2008;35:372–5.

    Article  PubMed  CAS  Google Scholar 

  18. Cobleigh MB, Bitterman P, Baker J, et al. Tumor gene expression predicts distant disease-free survival (DDFS) in breast cancer patients with 10 or more positive nodes: high throughput RT-PCR assay of paraffin-embedded tumor tissues. Proc Am Soc Clin Oncol 2003;22:850.abstract.

    Google Scholar 

  19. Dave SS, Fu K, Wright GW, et al. Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med 2006; 354:2431–42.

    Article  PubMed  CAS  Google Scholar 

  20. Desmedt C, Piette F, Loi S, et al. Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 2007;13:3207–14.

    Article  PubMed  CAS  Google Scholar 

  21. Desmedt C, Ruiz-Garcia E, Andre F. Gene expression predictors in breast cancer: current status, limitations and perspectives. Eur J Cancer 2008;44:2714–20.

    Article  PubMed  CAS  Google Scholar 

  22. Dumur CI, Lyons-Weiler M, Sciulli C, et al. Interlaboratory performance of a microarray-based gene expression test to determine tissue of origin in poorly differentiated and undifferentiated cancers. J Mol Diagn 2008;10:67–77.

    Article  PubMed  CAS  Google Scholar 

  23. Early Breast Cancer Trialists’ Collaborative Group. Polychemotherapy for early breast cancer: an overview of the randomised trials. Lancet 1998;352:930–42.

    Article  Google Scholar 

  24. Eickhoff A, Riemann JF. [Colon carcinoma: early detection and endoscopic prevention.] Internist (Berl) 2000;41:860–7.

    Article  CAS  Google Scholar 

  25. Esteban JB, Baker J, Cronin M, et al. Tumor gene expression and prognosis in breast cancer: multi-gene RT-PCR assay of paraffin-embedded tissue. Proc Am Soc Clin Oncol 2003;22:850.abstract.

    Google Scholar 

  26. Fan JB, Gunderson KL, Bibikova M, et al. Illumina universal bead arrays. Methods Enzymol 2006;410:57–73.

    Article  PubMed  CAS  Google Scholar 

  27. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990;61:759–67.

    Article  PubMed  CAS  Google Scholar 

  28. Foster MW, Mulvihill JJ, Sharp RR. Investments in cancer genomics: who benefits and who decides. Am J Public Health 2006;96:1960–4.

    Article  PubMed  Google Scholar 

  29. Futreal PA, Coin L, Marshall M, et al. A census of human cancer genes. Nat Rev Cancer 2004;4:177–83.

    Article  PubMed  CAS  Google Scholar 

  30. Garman KS, Acharya CR, Edelman E, et al. A genomic approach to colon cancer risk stratification yields biologic insights into therapeutic opportunities. Proc Natl Acad Sci U S A 2008;105:19432–7.

    Article  PubMed  CAS  Google Scholar 

  31. Glas AM, Floore A, Delahaye LJ, et al. Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics 2006;7:278.

    Article  PubMed  CAS  Google Scholar 

  32. Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999;286:531–7.

    Article  PubMed  CAS  Google Scholar 

  33. Haferlach T, Kern W, Hofmann W, et al., the MILE Study Group, European Leukemia Network. An international multi-center study to assess the clinical accuracy of the molecular subclassification of leukemia by gene expression profiling. J Clin Oncol AAMPI 2006;24:Suppl 18:6522.abstract.

    Google Scholar 

  34. Haferlach T, Kohlmann A, Schnittger S, et al. Global approach to the diagnosis of leukemia using gene expression profiling. Blood 2005;106:1189–98.

    Article  PubMed  CAS  Google Scholar 

  35. Harris L, Fritsche H, Mennel R, et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 2007;25:5287–312.

    Article  PubMed  CAS  Google Scholar 

  36. Haslinger C, Schweifer N, Stilgenbauer S, et al. Microarray gene expression profiling of B-cell chronic lymphocytic leukemia subgroups defined by genomic aberrations and VH mutation status. J Clin Oncol 2004;22:3937–49.

    Article  PubMed  CAS  Google Scholar 

  37. Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med 2008;359:1367–80.

    Article  PubMed  CAS  Google Scholar 

  38. Ho SB, Hyslop A, Albrecht R, et al. Quantification of colorectal cancer micrometastases in lymph nodes by nested and real-time reverse transcriptase-PCR analysis for carcinoembryonic antigen. Clin Cancer Res 2004;10:5777–84.

    Article  PubMed  CAS  Google Scholar 

  39. Hummel M, Bentink S, Berger H, et al. A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med 2006;354:2419–30.

    Article  PubMed  CAS  Google Scholar 

  40. Iacobuzio-Donahue CA. Epigenetic changes in cancer. Annu Rev Pathol 2009;in press (Epub 2008 Oct 7).

  41. Interdisziplinäre S3-Leitlinie für die Diagnostik, Therapie und Nachsorge des Mammakarzinoms, 1. Aktualisierung. München: Zuckschwerdt, 2008.

    Google Scholar 

  42. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008. CA Cancer J Clin 2008;58:71–96.

    Article  PubMed  Google Scholar 

  43. Kohlmann A, Kipps TJ, Rassenti LZ, et al. An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the Microarray Innovations in LEukemia study prephase. Br J Haematol 2008;142:802–7.

    Article  PubMed  CAS  Google Scholar 

  44. Le Chevalier T, Cvitkovic E, Caille P, et al. Early metastatic cancer of unknown primary origin at presentation. A clinical study of 302 consecutive autopsied patients. Arch Intern Med 1988;148:2035–9.

    Article  PubMed  Google Scholar 

  45. Lenz G, Wright G, Dave SS, et al. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 2008;359:2313–23.

    Article  PubMed  CAS  Google Scholar 

  46. Ley TJ, Mardis ER, Ding L, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 2008;456:66–72.

    Article  PubMed  CAS  Google Scholar 

  47. Link KH, Sagban TA, Morschel M, et al. Colon cancer: survival after curative surgery. Langenbecks Arch Surg 2005;390:83–93.

    Article  PubMed  CAS  Google Scholar 

  48. Lu Y, Lemon W, Liu PY, et al. A gene expression signature predicts survival of patients with stage I non-small cell lung cancer. PLoS Med 2006;3:e467.

    Article  PubMed  CAS  Google Scholar 

  49. Metzeler KH, Hummel M, Bloomfield CD, et al. An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia. Blood 2008;112:4193–201.

    Article  PubMed  CAS  Google Scholar 

  50. Mook S, Van’t Veer LJ, Rutgers EJ, et al. Individualization of therapy using Mammaprint: from development to the MINDACT trial. Cancer Genom Proteom 2007;4:147–55.

    CAS  Google Scholar 

  51. Munoz M, Estevez LG, Alvarez I, et al. Evaluation of international treatment guidelines and prognostic tests for the treatment of early breast cancer. Cancer Treat Rev 2008;34:701–9.

    Article  PubMed  Google Scholar 

  52. NCCN. Clinical practice guidelines in oncology. Occult primary, version 1. Fort Washington: National Comprehensive Cancer Network, 2009 (http://www.nccn.org/professionals/physician_gls/PDF/occult.pdf).

    Google Scholar 

  53. Paik SS, Shak S, Tang G, et al. Multi-gene RT-PCR assay for predicting recurrence in node negative breast cancer patients: NSABP studies B-20 and B-14. Breast Cancer Res Treat 2003;82:A16.abstract.

    Google Scholar 

  54. Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004;351:2817–26.

    Article  PubMed  CAS  Google Scholar 

  55. Pan Q, Shai O, Lee LJ, et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 2008;40:1413–5.

    Article  PubMed  CAS  Google Scholar 

  56. Pavlidis N, Merrouche Y. The importance of identifying CUP subsets. In: Fizazi K, ed. Carcinoma of unknown primary site. New York: Taylor & Francis, 2006:37–48.

    Google Scholar 

  57. Potti A, Dressman HK, Bild A, et al. Genomic signatures to guide the use of chemotherapeutics. Nat Med 2006;12:1294–300.

    Article  PubMed  CAS  Google Scholar 

  58. Potti A, Mukherjee S, Petersen R, et al. A geno mic strategy to refine prognosis in early-stage non-small-cell lung cancer. N Engl J Med 2006; 355:570–80.

    Article  PubMed  CAS  Google Scholar 

  59. Radmacher MD, Marcucci G, Ruppert AS, et al. Independent confirmation of a prognostic gene-expression signature in adult acute myeloid leukemia with a normal karyotype: a Cancer and Leukemia Group B study. Blood 2006;108:1677–83.

    Article  PubMed  CAS  Google Scholar 

  60. Ragoussis J, Elvidge G. Affymetrix GeneChip system: moving from research to the clinic. Expert Rev Mol Diagn 2006;6:145–52.

    Article  PubMed  CAS  Google Scholar 

  61. Robert Koch-Institut, die Gesellschaft der epidemiologischen Krebsregister in Deutschland e.V., Hrsg. Krebs in Deutschland 2003-2004. Häufigkeiten und Trends, 6. Aufl. Berlin: Robert Koch-Institut die Gesellschaft der epidemiologischen Krebsregister in Deutschland e.V., 2008.

    Google Scholar 

  62. Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 2002;346:1937–47.

    Article  PubMed  Google Scholar 

  63. Rosenwald A, Wright G, Leroy K, et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med 2003;198:851–62.

    Article  PubMed  CAS  Google Scholar 

  64. Rosenwald A, Wright G, Wiestner A, et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell 2003; 3:185–97.

    Article  PubMed  CAS  Google Scholar 

  65. Ross ME, Zhou X, Song G, et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 2003;102:2951–9.

    Article  PubMed  CAS  Google Scholar 

  66. Shipp MA, Ross KN, Tamayo P, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 2002;8:68–74.

    Article  PubMed  CAS  Google Scholar 

  67. Sjoblom T, Jones S, Wood LD, et al. The consensus coding sequences of human breast and colorectal cancers. Science 2006;314:268–74.

    Article  PubMed  CAS  Google Scholar 

  68. Sparano JA. TAILORx: trial assigning individualized options for treatment (Rx). Clin Breast Cancer 2006; 7:347–50.

    Article  PubMed  Google Scholar 

  69. Sun S, Schiller JH, Gazdar AF. Lung cancer in never smokers - a different disease. Nat Rev Cancer 2007;7:778–90.

    Article  PubMed  CAS  Google Scholar 

  70. Thomas M, Morr H, Niederle N. Leitlinien-basierte Empfehlungen für die Praxis, C2 Lungenkarzinom. München: Elsevier, 2008.

    Google Scholar 

  71. Tothill RW, Kowalczyk A, Rischin D, et al. An expression-based site of origin diagnostic method designed for clinical application to cancer of unknown origin. Cancer Res 2005;65:4031–40.

    Article  PubMed  CAS  Google Scholar 

  72. Valk PJ, Verhaak RG, Beijen MA, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004;350:1617–28.

    Article  PubMed  CAS  Google Scholar 

  73. Van Delft FW, Bellotti T, Luo Z, et al. Prospective gene expression analysis accurately subtypes acute leukaemia in children and establishes a commonality between hyperdiploidy and t(12;21) in acute lymphoblastic leukaemia. Br J Haematol 2005; 130:26–35.

    Article  PubMed  CAS  Google Scholar 

  74. Van de Vijver MJ, He YD, van’t Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002;347:1999–2009.

    Article  PubMed  Google Scholar 

  75. Van’t Veer LJ, Bernards R. Enabling personalized cancer medicine through analysis of gene-expression patterns. Nature 2008;452:564–70.

    Article  PubMed  CAS  Google Scholar 

  76. Van’t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002;415:530–6.

    Article  Google Scholar 

  77. Varadhachary GR, Talantov D, Raber MN, et al. Molecular profiling of carcinoma of unknown primary and correlation with clinical evaluation. J Clin Oncol 2008;26:4442–8.

    Article  PubMed  CAS  Google Scholar 

  78. Verhaak RG, Goudswaard CS, van Putten W, et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood 2005;106:3747–54.

    Article  PubMed  CAS  Google Scholar 

  79. Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development. N Engl J Med 1988;319:525–32.

    PubMed  CAS  Google Scholar 

  80. Wang Y, Klijn JG, Zhang Y, et al. Gene-expression profiles to predict distant metastasis of lymph-nodenegative primary breast cancer. Lancet 2005;365:671–9.

    PubMed  CAS  Google Scholar 

  81. Wood LD, Parsons DW, Jones S, et al. The genomic landscapes of human breast and colorectal cancers. Science 2007;318:1108–13.

    Article  PubMed  CAS  Google Scholar 

  82. Yeoh EJ, Ross ME, Shurtleff SA, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002;1:133–43.

    Article  PubMed  CAS  Google Scholar 

  83. Zujewski JA, Kamin L. Trial assessing individualized options for treatment for breast cancer: the TAILORx trial. Future Oncol 2008;4:603–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Staratschek-Jox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaarz, A., Debey-Pascher, S., Classen, S. et al. Genexpressionsprofile in der onkologischen Diagnostik. Onkopipeline 2, 44–52 (2009). https://doi.org/10.1007/s15035-009-0150-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15035-009-0150-3

Schlüsselwörter:

Key Words:

Navigation