Skip to main content

Advertisement

Log in

Evaluation of the NanoCHIP® Infection Control Panel test for direct detection and screening of methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria and vancomycin-resistant Enterococcus (VRE)

  • Original Paper
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Purpose

Rapid detection of infection control targets is needed and several bacterial target assays are commercially available. Detection of patients colonized with Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae (KPC-CRE), methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) comprises an essential part of infection control programs. This study evaluated the performance and feasibility of a novel molecular-based diagnostic screening test, the NanoCHIP® Infection Control Panel (ICP) assay (Savyon Diagnostics, Israel), which enables simultaneous detection of KPC-CRE, MRSA and VRE directly from swab samples and compares its sensitivity and specificity to culture.

Methods

Prospective direct swab analysis of 338 (70 CRE, 198 MRSA and 70 VRE) screening swab samples.

Results

Including all targets and all valid samples, the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the NanoCHIP® ICP assay were 91.1, 99.5, 99.1 and 94.9 %, respectively.

Conclusions

As far as we know, this is the first report regarding a single molecular-based system that detects all three targets (CRE-KPC, MRSA and VRE) simultaneously, directly from swab samples, using the same reaction and platform. Overall, the assay was easy to perform, enabling medium- to high-throughput screening. Same day results enable efficient infection control interventions, such as carrier isolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gastmeier P, Sohr D, Geffers C, Behnke M, Daschner F, Rüden H. Mortality risk factors with nosocomial Staphylococcus aureus infections in intensive care units: results from the German Nosocomial Infection Surveillance System (KISS). Infection. 2005;33(2):50–5.

    Article  CAS  PubMed  Google Scholar 

  2. Borer A, Saidel-Odes L, Riesenberg K, Eskira S, Peled N, Nativ R, Schlaeffer F, Sherf M. Attributable mortality rate for carbapenem resistant Klebsiella pneumoniae bacteremia. Infect Control Hosp Epidemiol. 2009;30:972–6.

    Article  PubMed  Google Scholar 

  3. Maechler F, Peña Diaz LA, Schröder C, Geffers C, Behnke M, Gastmeier P. Prevalence of carbapenem-resistant organisms and other Gram-negative MDRO in German ICUs: first results from the national nosocomial infection surveillance system (KISS). Infection. 2014. doi:10.1007/s15010-014-0701-6.

    Google Scholar 

  4. Bhavnani SM, Drake JA, Forrest A, Deinhart JA, Jones RN, Biedenbach DJ, Ballow CH. A nationwide, multicenter, case–control study comparing risk factors, treatment, and outcome for vancomycin-resistant and susceptible enterococcal bacteremia. Diagn Microbiol Infect Dis. 2000;36:145–58.

    Article  CAS  PubMed  Google Scholar 

  5. Nordmann P, Cuzon G, Naas T. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis. 2009;9:228–36.

    Article  CAS  PubMed  Google Scholar 

  6. Engemann JJ, Carmeli Y, Cosgrove SE, Fowler VG, Bronstein MZ, Trivette SL, Briggs JP, Sexton DJ, Kaye KS. Adverse clinical and economic outcomes attributable to methicillin resistance among patients with Staphylococcus aureus surgical site infection. Clin Infect Dis. 2003;36:592–8.

    Article  PubMed  Google Scholar 

  7. Cosgrove SE, Qi Y, Kaye KS, Harbarth S, Karchmer AW, Carmeli Y. The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges. Infect Control Hosp Epidemiol. 2005;26:166–74.

    Article  PubMed  Google Scholar 

  8. Moellering RC Jr. Emergence of Enterococcus as a significant pathogen. Clin Infect Dis. 1992;14:1173–6.

    Article  PubMed  Google Scholar 

  9. Muto CA, Jernigan JA, Ostrowsky BE, Richet HM, Jarvis WR, Boyce JM, Farr BM, SHEA. SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and Enterococcus. Infect Control Hosp Epidemiol. 2003;24:362–86.

    Article  PubMed  Google Scholar 

  10. Mangold KA, Santiano K, Broekman R, Krafft CA, Voss B, Wang V, Hacek DM, Usacheva EA, Thomson RB Jr, Kaul KL, Peterson LR. Real-time detection of bla(KPC) in clinical samples and surveillance specimens. J Clin Microbiol. 2011;49:3338–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Galar A, Leiva J, Espinosa M, Guillén-Grima F, Hernáez S, Yuste JR. Clinical and economic evaluation of the impact of rapid microbiological diagnostic testing. J Infect. 2012;65:302–9.

    Article  CAS  PubMed  Google Scholar 

  12. Chowers MY, Paitan Y, Gottesman BS, Gerber B, Ben-Nissan Y, Shitrit P. Hospital-wide methicillin-resistant Staphylococcus aureus control program: a 5-year follow-up. Infect Control Hosp Epidemiol. 2009;30:778–81.

    Article  PubMed  Google Scholar 

  13. Miller M, Tang YW. Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev. 2009;22:611–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Murray PR. Manual of clinical microbiology. 9th ed. Washington D.C: ASM Press; 2007.

    Google Scholar 

  15. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-first informational supplement. Approved standard MS100-S20. Wayne: Clinical and Laboratory Standards Institute; 2011.

    Google Scholar 

  16. Anderson KF, Lonsway DR, Rasheed JK, Biddle J, Jensen B, McDougal LK, Carey RB, Thompson A, Stocker S, Limbago B, Patel JB. Evaluation of methods to identify the Klebsiella pneumoniae carbapenemase in Enterobacteriaceae. J Clin Microbiol. 2007;45:2723–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Reischl U, Pulz M, Ehret W, Wolf H. PCR-based detection of mycobacteria in sputum samples using a simple and reliable DNA extraction protocol. Biotechniques. 1994;17:844–5.

    CAS  PubMed  Google Scholar 

  18. Huletsky A, Giroux R, Rossbach V, Gagnon M, Vaillancourt M, Bernier M, Gagnon F, Truchon K, Bastien M, Picard FJ, van Belkum A, Ouellette M, Roy PH, Bergeron MG. New Real-Time PCR Assay for rapid detection of methicillin-resistant Staphylococcus aureus directly from specimens containing a mixture of staphylococci. J Clin Microbiol. 2004;42:1875–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. McEwan AS, Derome A, Meunier D, Burns PJ, Woodford N, Dodgson AR. Evaluation of the NucliSENS EasyQ KPC assay for detection of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae. J Clin Microbiol. 2013;51:1948–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Tenover FC, Canton R, Kop J, Chan R, Ryan J, Weir F, Ruiz-Garbajosa P, LaBombardi V, Persing DH. Detection of colonization by carbapenemase-producing gram-negative bacilli in patients by use of the Xpert MDRO assay. J Clin Microbiol. 2013;51:3780–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Stamper PD, Cai M, Lema C, Eskey K, Carroll KC. Comparison of the BD GeneOhm VanR assay to culture for identification of vancomycin-resistant enterococci in rectal and stool specimens. J Clin Microbiol. 2007;45:3360–5.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Sloan LM, Uhl JR, Vetter EA, Schleck CD, Harmsen WS, Manahan J, Thompson RL, Rosenblatt JE, Cockerill FR 3rd. Comparison of the Roche LightCycler vanA/vanB detection assay and culture for detection of vancomycin-resistant enterococci from perianal swabs. J Clin Microbiol. 2004;42:2636–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Cekin Y, Erman Daloğlu A, Oğünç D, Ozhak Baysan B, Dağlar D, Inan D, Mutlu D, Ongüt G, Colak D. Evaluation of vancomycin resistance 3 multiplexed PCR assay for detection of vancomycin-resistant enterococci from rectal swabs. Ann Lab Med. 2013;33:326–30.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Bourdon N, Bérenger R, Lepoultier R, Mouet A, Lesteven C, Borgey F, Fines-Guyon M, Leclercq R, Cattoir V. Rapid detection of vancomycin-resistant enterococci from rectal swabs by the Cepheid Xpert vanA/vanB assay. Diagn Microbiol Infect Dis. 2010;67:291–3.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from Savyon Diagnostics.

Conflict of interest

Dr. Paitan has served as a consultant to Savyon Diagnostics since June 2011. The other authors have no potential conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yossi Paitan.

Additional information

J. Weiss, H. Arielly and N. Ganor contributed equally to the routine microbiology diagnostics.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 503 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiss, J., Arielly, H., Ganor, N. et al. Evaluation of the NanoCHIP® Infection Control Panel test for direct detection and screening of methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria and vancomycin-resistant Enterococcus (VRE). Infection 43, 331–338 (2015). https://doi.org/10.1007/s15010-015-0754-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-015-0754-1

Keywords

Navigation