Skip to main content
Log in

Strategies for Constructing Tissue-Engineered Fat for Soft Tissue Regeneration

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Background:

Repairing soft tissue defects caused by inflammation, tumors, and trauma remains a major challenge for surgeons. Adipose tissue engineering (ATE) provides a promising way to solve this problem.

Methods:

This review summarizes the current ATE strategies for soft tissue reconstruction, and introduces potential construction methods for ATE.

Results:

Scaffold-based and scaffold-free strategies are the two main approaches in ATE. Although several of these methods have been effective clinically, both scaffold-based and scaffold-free strategies have limitations. The third strategy is a synergistic tissue engineering strategy and combines the advantages of scaffold-based and scaffold-free strategies.

Conclusion:

Personalized construction, stable survival of reconstructed tissues and functional recovery of organs are future goals of building tissue-engineered fat for ATE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.

References

  1. Zhang Z, Cai J, Li Y, He Y, Dong Z, Dai J, et al. External volume expansion adjusted adipose stem cell by shifting the ratio of fibronectin to laminin. Tissue Eng Part A. 2020;26:66–77.

    Article  PubMed  Google Scholar 

  2. Qin Z, Chang Q, Lei C, He Y, Huang Z, Xing M, et al. Biocompatible interface-modified tissue engineering chamber reduces capsular contracture and enlarges regenerated adipose tissue. ACS Biomater Sci Eng. 2019;5:3440–7.

    Article  CAS  PubMed  Google Scholar 

  3. Gerges I, Tamplenizza M, Martello F, Koman S, Chincarini G, Recordati C, et al. Conditioning the microenvironment for soft tissue regeneration in a cell free scaffold. Sci Rep. 2021;11:13310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang J, Zhou C, Fu J, Yang Q, He T, Tan Q, et al. In situ adipogenesis in biomaterials without cell seeds: current status and perspectives. Front Cell Dev Biol. 2021;9:647149.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Panella S, Muoio F, Jossen V, Harder Y, Eibl-Schindler R, Tallone T. Chemically defined xeno- and serum-free cell culture medium to grow human adipose stem cells. Cells. 2021;10:466.

  6. He Y, Lin M, Wang X, Guan J, Dong Z, Lu F, et al. Optimized adipose tissue engineering strategy based on a neo-mechanical processing method. Wound Repair Regen. 2018;26:163–71.

    Article  PubMed  Google Scholar 

  7. Xie Y, Tang C, Huang Z, Zhou S, Yang Y, Yin Z, et al. Extracellular matrix remodeling in stem cell culture: a potential target for regulating stem cell function. Tissue Eng Part B Rev. 2022;28:542-54.

  8. Chen H, Wang X, Wang J, Shi X, Li X, Wang J, et al. In vitroadipogenesis and long-term adipocyte culture in adipose tissue-derived cell banks. Biofabrication. 2021. https://doi.org/10.1088/1758-5090/ac0610

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bolbasov E, Maryin P, Stankevich K, Kozelskaya A, Shesterikov E, Khodyrevskaya Y, et al. Surface modification of electrospun poly-(l-lactic) acid scaffolds by reactive magnetron sputtering. Biotechnol Adv. 2018;162:43–51.

    CAS  Google Scholar 

  10. Blum JC, Schenck TL, Birt A, Giunta RE, Wiggenhauser PS. Artificial decellularized extracellular matrix improves the regenerative capacity of adipose tissue derived stem cells on 3D printed polycaprolactone scaffolds. J Tissue Eng. 2021;12:20417314211022240.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Harrington S, Ott L, Karanu F, Ramachandran K, Stehno-Bittel L. A versatile microencapsulation platform for hyaluronic acid and polyethylene glycol. Tissue Eng Part A. 2021;27:153–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hajiabbas M, Alemzadeh I, Vossoughi MJCP. A porous hydrogel-electrospun composite scaffold made of oxidized alginate/gelatin/silk fibroin for tissue engineering application. Carbohydr Polym. 2020;245:116465.

    Article  CAS  PubMed  Google Scholar 

  13. Hawkins AM, Milbrandt TA, Puleo DA, Hilt JZ. Synthesis and analysis of degradation, mechanical and toxicity properties of poly(beta-amino ester) degradable hydrogels. Acta Biomater. 2011;7:1956–64.

    Article  CAS  PubMed  Google Scholar 

  14. Şeker Ş, Elçin A, Elçin YM. Autologous protein-based scaffold composed of platelet lysate and aminated hyaluronic acid. J Mater Sci: Mater Med. 2019;30:127.

    PubMed  Google Scholar 

  15. Bender R, McCarthy M, Brown T, Bukowska J, Smith S, Abbott R, et al. Human adipose derived cells in two- and three-dimensional cultures: functional validation of an in vitro fat construct. Stem Cells Int. 2020;2020:4242130.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Darouie S, Ansari Majd S, Rahimi F, Hashemi E, Kabirsalmani M, Dolatshahi-Pirouz A, et al. The fate of mesenchymal stem cells is greatly influenced by the surface chemistry of silica nanoparticles in 3D hydrogel-based culture systems. Mater Sci Eng. 2020;106:110259.

    Article  CAS  Google Scholar 

  17. Mohiuddin O, O’Donnell B, Poche J, Iftikhar R, Wise R, Motherwell J, et al. In vitrohuman adipose-derived hydrogel characterization based on ASC biocompatibility and differentiation. Stem Cells Int. 2019;2019:9276398.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kokai L, Schilling B, Chnari E, Huang Y, Imming E, Karunamurthy A, et al. Injectable allograft adipose matrix supports adipogenic tissue remodeling in the nude mouse and human. Plast Reconstr Surg. 2019;143:299e–309.

  19. Giatsidis G, Succar J, Waters T, Liu W, Rhodius P, Wang C, et al. Tissue-engineered soft-tissue reconstruction using noninvasive mechanical preconditioning and a shelf-ready allograft adipose matrix. Plast Reconstr Surg. 2019;144:884–95.

    Article  CAS  PubMed  Google Scholar 

  20. Jin M, Shi J, Zhu W, Yao H, Wang DA. Polysaccharide-based biomaterials in tissue engineering: a review. Tissue Eng Part B Rev. 2021;27:604–26.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Z, Qu R, Fan T, Ouyang J, Lu F, Dai J. Stepwise adipogenesis of decellularized cellular extracellular matrix regulates adipose tissue-derived stem cell migration and differentiation. Stem Cells Int. 2019;2019:1845926.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rijal G, Wang J, Yu I, Gang D, Chen R, Li W. Porcine breast extracellular matrix hydrogel for spatial tissue culture. Int J Mol Sci. 2018;19:2912.

  23. Han T, Flynn LE. Perfusion bioreactor culture of human adipose-derived stromal cells on decellularized adipose tissue scaffolds enhances in vivo adipose tissue regeneration. J Tissue Eng Regen Med. 2020;14:1827–40.

    Article  CAS  PubMed  Google Scholar 

  24. Morissette Martin P, Shridhar A, Yu C, Brown C, Flynn LE. Decellularized adipose tissue scaffolds for soft tissue regeneration and adipose-derived stem/stromal cell delivery. Adipose-Deriv Stem Cells: Methods Protoc. 2018;1773:53–71.

    Article  Google Scholar 

  25. Dong J, Yu M, Zhang Y, Yin Y, Tian W. Recent developments and clinical potential on decellularized adipose tissue. J Biomed Mater Res: Part A. 2018;106:2563–74.

    Article  CAS  Google Scholar 

  26. Lin M, Ge J, Wang X, Dong Z, Xing M, Lu F, et al. Biochemical and biomechanical comparisions of decellularized scaffolds derived from porcine subcutaneous and visceral adipose tissue. J Tissue Eng. 2019;10:2041731419888168.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rossi E, Guerrero J, Aprile P, Tocchio A, Kappos E, Gerges I, et al. Decoration of RGD-mimetic porous scaffolds with engineered and devitalized extracellular matrix for adipose tissue regeneration. Acta Biomater. 2018;73:154–66.

    Article  CAS  PubMed  Google Scholar 

  28. Solovieva EV, Teterina AY, Klein OI, Komlev VS, Alekseev AA, Panteleyev AA. Sodium alginate-based composites as a collagen substitute for skin bioengineering. Biomed Mater. 2020;16:015002.

  29. Banani M, Rahmatullah M, Farhan N, Hancox Z, Yousaf S, Arabpour Z, et al. Adipose tissue-derived mesenchymal stem cells for breast tissue regeneration. Regen Med. 2021;16:47–70.

    Article  CAS  PubMed  Google Scholar 

  30. Zhu Z, Yuan Z, Huang C, Jin R, Sun D, Yang J, et al. Construction of a dermis-fat composite in vivo: optimizing heterogeneous acellular dermal matrix with in vitro pretreatment. J Tissue Eng Regen Med. 2020;14:215–28.

    Article  CAS  PubMed  Google Scholar 

  31. Yang G, Xiao Z, Long H, Ma K, Zhang J, Ren X, et al. Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods. Sci Rep. 2018;8:1616.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kambe Y, Ogino S, Yamanaka H, Morimoto N, Yamaoka T. Adipose tissue regeneration in a 3D-printed poly(lactic acid) frame-supported space in the inguinal region of rats. Biomed Mater Eng. 2020;31:203–10.

    CAS  PubMed  Google Scholar 

  33. Tytgat L, Kollert M, Van Damme L, Thienpont H, Ottevaere H, Duda G, et al. Evaluation of 3D printed gelatin-based scaffolds with varying pore size for MSC-based adipose tissue engineering. Macromol Biosci. 2020;20:e1900364.

    Article  PubMed  Google Scholar 

  34. Zhu Y, Kruglikov IL, Akgul Y, Scherer PE. Hyaluronan in adipogenesis, adipose tissue physiology and systemic metabolism. Matrix Biol. 2019;78:284–91.

    Article  PubMed  Google Scholar 

  35. Chen X, Lu F, Yuan Y. The application and mechanism of action of external volume expansion in soft tissue regeneration. Tissue Eng Part B Rev. 2021;27:181–97.

    Article  CAS  PubMed  Google Scholar 

  36. Jain S, Yassin M, Fuoco T, Liu H, Mohamed-Ahmed S, Mustafa K, et al. Engineering 3D degradable, pliable scaffolds toward adipose tissue regeneration; optimized printability, simulations and surface modification. J Tissue Eng. 2020;11:2041731420954316.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Xiang S, Li Z, Fritch MR, Li VS, Liu Y, et al. Caveolin-1 mediates soft scaffold-enhanced adipogenesis of human mesenchymal stem cells. Stem Cell Res Ther. 2021;12:347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. O’Halloran NA, Dolan EB, Kerin MJ, Lowery AJ, Duffy GP. Hydrogels in adipose tissue engineering-potential application in post-mastectomy breast regeneration. J Tissue Eng Regen Med. 2018;12:2234–47.

    Article  CAS  PubMed  Google Scholar 

  39. Song M, Liu Y, Hui L. Preparation and characterization of acellular adipose tissue matrix using a combination of physical and chemical treatments. Mol Med Rep. 2018;17:138–46.

    CAS  PubMed  Google Scholar 

  40. Visscher LE, Cheng M, Chhaya M, Hintz ML, Schantz JT, Tran P, et al. Breast augmentation and reconstruction from a regenerative medicine point of view: state of the art and future perspectives. Tissue Eng Part B Rev. 2017;23:281–93.

    Article  PubMed  Google Scholar 

  41. Puls TJ, Fisher CS, Cox A, Plantenga JM, McBride EL, Anderson JL, et al. Regenerative tissue filler for breast conserving surgery and other soft tissue restoration and reconstruction needs. Sci Rep. 2021;11:2711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Luo Y, Wei X, Wan Y, Lin X, Wang Z, Huang PJ. 3D printing of hydrogel scaffolds for future application in photothermal therapy of breast cancer and tissue repair. Acta Biomater. 2019;92:37–47.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang Z, Cao Q, Xia Y, Cui C, Qi Y, Zhang Q, et al. Combination of biodegradable hydrogel and antioxidant bioadhesive for treatment of breast cancer recurrence and radiation skin injury. Bioact Mater. 2024;31:408–21.

    CAS  PubMed  Google Scholar 

  44. Sun R, Chen H, Zheng J, Yoshitomi T, Kawazoe N, Yang Y, et al. Composite scaffolds of gelatin and Fe3O4 nanoparticles for magnetic hyperthermia-based breast cancer treatment and adipose tissue regeneration. Adv Healthc Mater. 2023;12:e2202604.

    Article  PubMed  Google Scholar 

  45. Baldwin A, Uy L, Frank-Kamenetskii A, Strizzi L, Booth BW. The in vivo biocompatibility of novel tannic acid-collagen type I injectable bead scaffold material for breast reconstruction post-lumpectomy. J Biomater Appl. 2020;34:1315–29.

    Article  CAS  PubMed  Google Scholar 

  46. Chang Q, Cai J, Wang Y, Yang R, Xing M, Lu F. Large adipose tissue generation in a mussel-inspired bioreactor of elastic-mimetic cryogel and platelets. J Tissue Eng. 2018;9:2041731418808633.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Negrini NC, Bonnetier M, Giatsidis G, Orgill DP, Farè S, Marelli B. Tissue-mimicking gelatin scaffolds by alginate sacrificial templates for adipose tissue engineering. Acta Biomater. 2019;87:61–75.

    Article  Google Scholar 

  48. Major GS, Simcock JW, Woodfield TBF, Lim KS. Overcoming functional challenges in autologous and engineered fat grafting trends. Trends Biotechnol. 2022;40:77–92.

    Article  CAS  PubMed  Google Scholar 

  49. Yap KK, Yeoh GC, Morrison WA, Mitchell GM. The vascularised chamber as an in vivo bioreactor. Trends Biotechnol. 2018;36:1011–24.

    Article  CAS  PubMed  Google Scholar 

  50. Henn D, Chen K, Fischer K, Rauh A, Barrera J, Kim Y, et al. Tissue engineering of axially vascularized soft-tissue flaps with a poly-(ɛ-caprolactone) nanofiber-hydrogel composite. Adv Wound Care. 2020;9:365–77.

    Article  Google Scholar 

  51. Freiman A, Shandalov Y, Rosenfeld D, Shor E, Ben-David D, Meretzki S, et al. Engineering vascularized flaps using adipose-derived microvascular endothelial cells and mesenchymal stem cells. J Tissue Eng Regen Med. 2018;12:e130–41.

    Article  CAS  PubMed  Google Scholar 

  52. Donnely E, Griffin M, Butler PE. Breast reconstruction with a tissue engineering and regenerative medicine approach (systematic review). Ann Biomed Eng. 2020;48:9–25.

    Article  CAS  PubMed  Google Scholar 

  53. Meijer EM, van Dijk CGM, Kramann R, Verhaar MC, Cheng C. Implementation of pericytes in vascular regeneration strategies. Tissue Eng Part B Rev. 2022;28:1–21.

    Article  CAS  PubMed  Google Scholar 

  54. Kim SJ, Lee S, Kim C, Shin H. One-step harvest and delivery of micropatterned cell sheets mimicking the multi-cellular microenvironment of vascularized tissue. Acta Biomater. 2021;132:176–87.

    Article  CAS  PubMed  Google Scholar 

  55. Asano Y, Okano D, Matsusaki M, Watabe T, Yoshimatsu Y, Akashi M, et al. Construction of transplantable artificial vascular tissue based on adipose tissue-derived mesenchymal stromal cells by a cell coating and cryopreservation technique. Sci Rep. 2021;11:17989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Später T, Marschall J, Brücker L, Nickels R, Metzger W, Menger M, et al. Vascularization of microvascular fragment isolates from visceral and subcutaneous adipose tissue of mice. Tissue Eng Regen Med. 2022;19:161–75.

    Article  PubMed  Google Scholar 

  57. Laschke MW, Spater T, Menger MD. Microvascular fragments: more than just natural vascularization units. Trends Biotechnol. 2021;39:24–33.

    Article  CAS  PubMed  Google Scholar 

  58. Mohiuddin O, Campbell B, Poche J, Thomas-Porch C, Hayes D, Bunnell B, et al. Decellularized adipose tissue: biochemical composition, in vivo analysis and potential clinical applications. Adv Exp Med Biol. 2020;1212:57-70.

  59. Ovsianikov A, Khademhosseini A, Mironov V. The synergy of scaffold-based and scaffold-free tissue engineering strategies. Trends Biotechnol. 2018;36:348–57.

    Article  CAS  PubMed  Google Scholar 

  60. Tanaka Y, Tamai M, Taguchi N, Niyazi A, Ueno M, Nagasao T. Spontaneously generated large adipose flaps in vivo tissue engineering chambers. J Plast Reconstr Aesth Surg. 2020;73:1889–96.

    Article  Google Scholar 

  61. Long H, Ma K, Xiao Z, Ren X, Yang G. Preparation and characteristics of gelatin sponges crosslinked by microbial transglutaminase. PeerJ. 2017;5:e3665.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Santos SC, Custódio CA, Mano JF. Human protein-based porous scaffolds as platforms for xeno-free 3D cell culture. Adv Healthc Mater. 2022;11:e2102383.

    Article  PubMed  Google Scholar 

  63. Zhang W, Zhang K, Li G, Yan S, Cui L, Yin J. Effects of large dimensional deformation of a porous structure on stem cell fate activated by poly(l-glutamic acid)-based shape memory scaffolds. Biomater Sci. 2018;6:2738–49.

    Article  CAS  PubMed  Google Scholar 

  64. Cho WW, Kim BS, Ahn M, Ryu YH, Ha DH, Kong JS, et al. Flexible adipose-vascular tissue assembly using combinational 3d printing for volume-stable soft tissue reconstruction. Adv Healthc Mater. 2021;10:e2001693.

    Article  PubMed  Google Scholar 

  65. Barnett H, Heimbuck A, Pursell I, Hegab R, Sawyer B, Newman J, et al. Poly (ethylene glycol) hydrogel scaffolds with multiscale porosity for culture of human adipose-derived stem cells. J Biomater Sci Polym Ed. 2019;30:895–918.

    Article  CAS  PubMed  Google Scholar 

  66. Jeon EY, Joo KI, Cha HJ. Body temperature-activated protein-based injectable adhesive hydrogel incorporated with decellularized adipose extracellular matrix for tissue-specific regenerative stem cell therapy. Acta Biomater. 2020;114:244–55.

    Article  CAS  PubMed  Google Scholar 

  67. Ren B, Chen X, Ma Y, Du S, Qian S, et al. Dynamical release nanospheres containing cell growth factor from biopolymer hydrogel via reversible covalent conjugation. J Biomater Sci Polym Ed. 2018;29:1344–59.

    Article  CAS  PubMed  Google Scholar 

  68. Murphy KP, Hendley MA, Isely C, Annamalai P, Pena E, Gower RM, et al. Resveratrol delivery from porous poly (lactide-co-glycolide) scaffolds promotes an anti-inflammatory environment within visceral adipose tissue. ACS Appl Mater Interfaces. 2018;10:43363–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lu Z, Jiang X, Chen M, Feng L, Kang YJ. An oxygen-releasing device to improve the survival of mesenchymal stem cells in tissue engineering. Biofabrication. 2019;11:045012.

    Article  CAS  PubMed  Google Scholar 

  70. Matsusaki M. 3D collagen microfibers stimulate the functionality of preadipocytes and maintain the phenotype of mature adipocytes for long term cultures. Acta Biomater. 2019;15:194–207.

  71. Lee JY, Koo Y, Kim G. Innovative cryopreservation process using a modified core/shell cell-printing with a microfluidic system for cell-laden scaffolds. ACS Appl Mater Interfaces. 2018;10:9257–68.

    Article  CAS  PubMed  Google Scholar 

  72. Khorramirouz R, Go J, Noble C, Jana S, Maxson E, Lerman A, et al. A novel surgical technique for a rat subcutaneous implantation of a tissue engineered scaffold. Acta Histochem. 2018;120:282–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang G, Ci H, Ma C, Li Z, Jiang W, Chen L, et al. Additively manufactured macroporous chambers facilitate large volume soft tissue regeneration from adipose-derived extracellular matrix. Acta Biomater. 2022;148:90–105.

    Article  CAS  PubMed  Google Scholar 

  74. Rehnke RD, Schusterman MA 2nd, Clarke JM, Price BC, Waheed U, Debski RE, et al. Breast reconstruction using a three-dimensional absorbable mesh scaffold and autologous fat grafting: a composite strategy based on tissue-engineering principles. Plast Reconstr Surg. 2020;146:409e–13e.

    Article  CAS  PubMed  Google Scholar 

  75. Khouri RK, Hong SP, Deune EG, Tarpley JE, Song SZ, Serdar CM, et al. De novo generation of permanent neovascularized soft tissue appendages by platelet-derived growth factor. J Clin Invest. 1994;94:1757–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yuan Y, Li H, Liao Y, Feng C. CD8+ T cells are involved in early inflammation before macrophages in a rat adipose tissue engineering chamber model. J Tissue Eng Regen Med. 2019;13:1499–506.

    Article  CAS  PubMed  Google Scholar 

  77. Lei C, Dong Z, Wan J, Xiao X, Lu F, Wang B. Transferring the exudate in the tissue engineering chamber as a trigger to incubate large amount adipose tissue in remote area. J Tissue Eng Regen Med. 2018;12:e1549–58.

    Article  CAS  PubMed  Google Scholar 

  78. Findlay MW, Dolderer JH, Trost N, Craft RO, Cao Y, Cooper-White J, et al. Tissue-engineered breast reconstruction: bridging the gap toward large-volume tissue engineering in humans. Plast Reconstr Surg. 2011;128:1206–15.

    Article  CAS  PubMed  Google Scholar 

  79. Morrison WA, Marre D, Grinsell D, Batty A, Trost N, O’Connor AJ. Creation of a large adipose tissue construct in humans using a tissue-engineering chamber: a step forward in the clinical application of soft tissue engineering. EBioMedicine. 2016;6:238–45.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Henn D, Fischer KS, Chen K, Greco AH, Martin RA, Sivaraj D, et al. Enrichment of nanofiber hydrogel composite with fractionated fat promotes regenerative macrophage polarization and vascularization for soft-tissue engineering. Plast Reconstr Surg. 2022;149:433e–44.

    Article  CAS  PubMed  Google Scholar 

  81. Kronowitz SJ, Mandujano CC, Liu J, Kuerer HM, Smith B, Garvey P, et al. Lipofilling of the breast does not increase the risk of recurrence of breast cancer: a matched controlled study. Plast Reconstr Surg. 2016;137:385–93.

    Article  CAS  PubMed  Google Scholar 

  82. Wazir U, El Hage Chehade H, Headon H, Oteifa M, Kasem A, Mokbel K. Oncological safety of lipofilling in patients with breast cancer: a meta-analysis and update on clinical practice. Anticancer Res. 2016;36:4521–8.

    Article  PubMed  Google Scholar 

  83. Silva-Vergara C, Fontdevila J, Weshahy O, Yuste M, Descarrega J, Grande L. Breast cancer recurrence is not increased with lipofilling reconstruction: a case-controlled study. Ann Plast Surg. 2017;79:243–8.

    Article  CAS  PubMed  Google Scholar 

  84. Trivanovic D, Nikolic S, Krstic J, Jaukovic A, Mojsilovic S, Ilic V, et al. Characteristics of human adipose mesenchymal stem cells isolated from healthy and cancer affected people and their interactions with human breast cancer cell line MCF-7 in vitro. Cell Biol Int. 2014;38:254–65.

    Article  CAS  PubMed  Google Scholar 

  85. Takahara K, Ii M, Inamoto T, Komura K, Ibuki N, Minami K, et al. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis. Biochem Biophys Res Commun. 2014;446:1102–7.

    Article  CAS  PubMed  Google Scholar 

  86. Nystrom M, Lauvrud AT, Perez-Diaz S, Kingham PJ, Wiberg R. Interaction of adipose-derived stem cells with active and dormant breast cancer cells. J Plast Reconstr Aesthet Surg. 2023;83:69–76.

    Article  PubMed  Google Scholar 

  87. Schlottmann F, Bucan V, Strauss S, Koop F, Vogt PM, Mett TR. Influence of tamoxifen on different biological pathways in tumorigenesis and transformation in adipose-derived stem cells, mammary cells and mammary carcinoma cell lines-an in vitro study. Cells. 2022;11:2733.

  88. Gentile P. Breast cancer therapy: the potential role of mesenchymal stem cells in translational biomedical research. Biomedicines. 2022;10:1179.

  89. Baptista LS. Adipose stromal/stem cells in regenerative medicine: potentials and limitations. World J Stem Cells. 2020;12:1.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Caplan AI. Mesenchymal stem cells: time to change the name! Stem Cells Transl Med. 2017;6:1445–51.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Yang Y, Lee EH, Yang Z. Hypoxia-conditioned mesenchymal stem cells in tissue regeneration application. Tissue Eng Part B Rev. 2022;28:966-77.

  92. Bacakova L, Zarubova J, Travnickova M, Musilkova J, Pajorova J, Slepicka P, et al. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells: a review. Biotechnol Adv. 2018;36:1111–26.

    Article  PubMed  Google Scholar 

  93. Doornaert M, Colle J, De Maere E, Declercq H, Blondeel P. Autologous fat grafting: latest insights. Ann Med Surg (Lond). 2018;37:47-53.

  94. Guo B, Sawkulycz X, Heidari N, Rogers R, Liu D, Slevin M. Characterisation of novel angiogenic and potent anti-inflammatory effects of micro-fragmented adipose tissue. Int J Mol Sci. 2021;22:3271.

  95. Naderi N, Griffin MF, Mosahebi A, Butler PE, Seifalian AM. Adipose derived stem cells and platelet rich plasma improve the tissue integration and angiogenesis of biodegradable scaffolds for soft tissue regeneration. Mol Biol Rep. 2020;47:2005–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ishihara M, Kishimoto S, Nakamura S, Fukuda K, Sato Y, Hattori H. Biomaterials as cell carriers for augmentation of adipose tissue-derived stromal cell transplantation. Bio-Med Mater Eng. 2018;29:567–85.

    Article  CAS  Google Scholar 

  97. Shah S, Esdaille CJ, Bhattacharjee M, Kan HM, Laurencin CT. The synthetic artificial stem cell (SASC): shifting the paradigm of cell therapy in regenerative engineering. Proc Natl Acad Sci U S A. 2022;119:e2116865118.

  98. Kamat P, Frueh FS, McLuckie M, Sanchez-Macedo N, Wolint P, Lindenblatt N, et al. Adipose tissue and the vascularization of biomaterials: Stem cells, microvascular fragments and nanofat-a review. Cytotherapy. 2020;22:400–11.

    Article  CAS  PubMed  Google Scholar 

  99. Sousa AR, Martins-Cruz C, Oliveira MB, Mano JF. One-step rapid fabrication of cell-only living fibers. Adv Mater. 2020;32:1906305.

    Article  CAS  Google Scholar 

  100. Kronemberger G, Miranda G, Silva T, Gonçalves R, Granjeiro J, Baptista LS. Large-scale, automated production of adipose-derived stem Cell spheroids for 3D bioprinting. J Vis Exp. 2022. https://doi.org/10.3791/63430

  101. Fürsatz M, Gerges P, Wolbank S, Nürnberger SJB. Autonomous spheroid formation by culture plate compartmentation. Biofabrication. 2021. https://doi.org/10.1088/1758-5090/abe186.

    Article  PubMed  Google Scholar 

  102. Guillaume O, Kopinski-Grunwald O, Weisgrab G, Baumgartner T, Arslan A, Whitmore K, et al. Hybrid spheroid microscaffolds as modular tissue units to build macro-tissue assemblies for tissue engineering. Acta Biomater. 2023:165:72-85.

  103. Xing D, Liu W, Li JJ, Liu L, Guo A, Wang B, et al. Engineering 3D functional tissue constructs using self-assembling cell-laden microniches. Acta Biomater. 2020;15:170–82.

    Article  Google Scholar 

  104. Lopa S, Piraino F, Talo G, Mainardi VL, Bersini S, Pierro M, et al. Microfluidic biofabrication of 3D multicellular spheroids by modulation of non-geometrical parameters. Front Bioeng Biotechnol. 2020;8:366.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Yang F, Carmona A, Stojkova K, Garcia Huitron EI, Goddi A, Bhushan A, et al. A 3D human adipose tissue model within a microfluidic device. Lab Chip. 2021;21:435–46.

    Article  CAS  PubMed  Google Scholar 

  106. Sarigil O, Anil-Inevi M, Firatligil-Yildirir B, Unal Y, Yalcin-Ozuysal O, Mese G, et al. Scaffold-free biofabrication of adipocyte structures with magnetic levitation. Biotechnol Bioeng. 2021;118:1127–40.

    Article  CAS  PubMed  Google Scholar 

  107. Tseng H, Daquinag AC, Souza GR, Kolonin MG. Three-dimensional magnetic levitation culture system simulating white adipose tissue. Methods Mol Biol. 2018;1773:147–54.

    Article  CAS  PubMed  Google Scholar 

  108. Velasco V, Shariati SA, Esfandyarpour R. Microtechnology-based methods for organoid models. Microsyst Nanoeng. 2020;6:76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lee YN, Yi HJ, Kim YH, Lee S, Oh J, Okano T, et al. Evaluation of multi-layered pancreatic islets and adipose-derived stem cell sheets transplanted on various sites for diabetes treatment. Cells. 2020;9:1999.

  110. Yu Y, Moncal KK, Li J, Peng W, Rivero I, Martin JA, et al. Three-dimensional bioprinting using self-assembling scalable scaffold-free “tissue strands” as a new bioink. Sci Rep. 2016;27:28714.

    Article  Google Scholar 

  111. Akkouch A, Yu Y, Ozbolat IT. Microfabrication of scaffold-free tissue strands for three-dimensional tissue engineering. Biofabrication. 2015;7:031002.

    Article  PubMed  Google Scholar 

  112. Tytgat L, Van Damme L, Van Hoorick J, Declercq H, Thienpont H, Ottevaere H, et al. Additive manufacturing of photo-crosslinked gelatin scaffolds for adipose tissue engineering. Acta Biomater. 2019;94:340–50.

    Article  CAS  PubMed  Google Scholar 

  113. Maghdouri-White Y, Bowlin GL, Lemmon CA, Dreau D. Bioengineered silk scaffolds in 3D tissue modeling with focus on mammary tissues. Mater Sci Eng C Mater Biol Appl. 2016;59:1168–80.

    Article  CAS  PubMed  Google Scholar 

  114. Hrynevich A, Elçi B, Haigh J, McMaster R, Youssef A, Blum C, et al. Dimension-based design of melt electrowritten scaffolds. Small. 2018;14:e1800232.

    Article  CAS  PubMed  Google Scholar 

  115. Blum C, Schlegelmilch K, Schilling T, Shridhar A, Rudert M, Jakob F, et al. extracellular matrix-modified fiber scaffolds as a proadipogenic mesenchymal stromal cell delivery platform. ACS Biomater Sci Eng. 2019;5:6655–66.

    Article  CAS  PubMed  Google Scholar 

  116. Ribeiro N, Sousa A, Cunha-Reis C, Oliveira AL, Granja PL, Monteiro FJ, et al. New prospects in skin regeneration and repair using nanophased hydroxyapatite embedded in collagen nanofibers. Nanomedicine. 2021;33:102353.

    Article  CAS  PubMed  Google Scholar 

  117. McMaster R, Hoefner C, Hrynevich A, Blum C, Wiesner M, Wittmann K, et al. Tailored melt electrowritten scaffolds for the generation of sheet-like tissue constructs from multicellular spheroids. Adv Healthc Mater. 2019;8:e1801326.

    Article  PubMed  Google Scholar 

  118. Ayan B, Heo DN, Zhang Z, Dey M, Povilianskas A, Drapaca C, et al. Aspiration-assisted bioprinting for precise positioning of biologics. Sci Adv. 2020;6:eaaw5111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Weisgrab G, Guillaume O, Guo Z, Heimel P, Slezak P, Poot A, et al. 3D Printing of large-scale and highly porous biodegradable tissue engineering scaffolds from poly(trimethylene-carbonate) using two-photon-polymerization. Biofabrication. 2020;12:045036.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (82072197, 82072197, 82072196, 82072196).

Author information

Authors and Affiliations

Authors

Contributions

JZ: drafting the article; substantial contribution to the conception and design of the study, or acquisition, interpretation and analysis of data. FL: revising the article critically for the important intellectual content. ZD: final approval of the version to be published.

Corresponding authors

Correspondence to Feng Lu or Ziqing Dong.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical statement

There are no animal experiments carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Lu, F. & Dong, Z. Strategies for Constructing Tissue-Engineered Fat for Soft Tissue Regeneration. Tissue Eng Regen Med 21, 395–408 (2024). https://doi.org/10.1007/s13770-023-00607-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-023-00607-z

Keywords

Navigation