Skip to main content
Log in

Influences of Xeno-Free Media on Mesenchymal Stem Cell Expansion for Clinical Application

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Mesenchymal stem/stromal cells (MSCs) are multipotent somatic stem/progenitor cells that can be isolated from various tissues and have attracted increasing attention from the scientific community. This is due to MSCs showing great potential for incurable disease treatment, and most applications of MSCs involve tissue degeneration and treatment of immune- and inflammation-mediated diseases. Conventional MSC cultures contain fetal bovine serum (FBS), which is a common supplement for cell development but is also a risk factor for exposure to animal-derived pathogens. To avoid the risks resulting from the xenogeneic origin and animal-derived pathogens of FBS, xeno-free media have been developed and commercialized to satisfy MSC expansion demands for human clinical applications. This review summarized and provided an overview of xeno-free media that are currently used for MSC expansion. Additionally, we discussed the influences of different xeno-free media on MSC biology with particular regard to cell morphology, surface marker expression, proliferation, differentiation and immunomodulation. The xeno-free media can be serum-free and xeno-free media or media supplemented with some human-originating substances, such as human serum, human platelet lysates, human umbilical cord serum/plasma, or human plasma-derived supplements for cell culture medium. These media have capacity to maintain a spindle-shaped morphology, the expression of typical surface markers, and the capacity of multipotent differentiation and immunomodulation of MSCs. Xeno-free media showed potential for safe use for human clinical treatment. However, the influences of these xeno-free media on MSCs are various and any xeno-free medium should be examined prior to being used for MSC cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3:393–403.

    CAS  PubMed  Google Scholar 

  2. Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. Cells. 2019;8:886.

    Article  CAS  PubMed Central  Google Scholar 

  3. Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019;4:22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Hass R, Kasper C, Bohm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal. 2011;9:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Weiss ARR, Dahlke MH. Immunomodulation by mesenchymal stem cells (MSCs): Mechanisms of action of living, apoptotic, and dead MSCs. Front Immunol. 2019;10:1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qin Y, Guan J, Zhang C. Mesenchymal stem cells: mechanisms and role in bone regeneration. Postgrad Med J. 2014;90:643–7.

    Article  PubMed  Google Scholar 

  7. Spees JL, Lee RH, Gregory CA. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res Ther. 2016;7:125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Shin TH, Kim HS, Choi SW, Kang KS. Mesenchymal stem cell therapy for inflammatory skin diseases: clinical potential and mode of action. Int J Mol Sci. 2017;18:244.

    Article  PubMed Central  CAS  Google Scholar 

  9. Wang LT, Ting CH, Yen ML, Liu KJ, Sytwu HK, Wu KK, et al. Human mesenchymal stem cells (MSCs) for treatment towards immune- and inflammation-mediated diseases: review of current clinical trials. J Biomed Sci. 2016;23:76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Wang M, Yuan Q, Xie L. Mesenchymal stem cell-based immunomodulation: properties and clinical application. Stem Cells Int. 2018;2018:3057624.

    PubMed  PubMed Central  Google Scholar 

  11. Feng Y, Zhan F, Zhong Y, Tan B. Effects of human umbilical cord mesenchymal stem cells derived from exosomes on migration ability of endometrial glandular epithelial cells. Mol Med Rep. 2020;22:715–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Laganà AS, Vitale SG, Salmeri FM, Triolo O, Ban Frangež H, Vrtačnik-Bokal E, et al. Unus pro omnibus, omnes pro uno: a novel, evidence-based, unifying theory for the pathogenesis of endometriosis. Med Hypotheses. 2017;103:10–20.

    Article  PubMed  CAS  Google Scholar 

  13. Amorin B, Alegretti AP, Valim V, Pezzi A, Laureano AM, da Silva MA, et al. Mesenchymal stem cell therapy and acute graft-versus-host disease: a review. Hum Cell. 2014;27:137–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Augustine S, Avey MT, Harrison B, Locke T, Ghannad M, Moher D, et al. Mesenchymal stromal cell therapy in bronchopulmonary dysplasia: Systematic review and meta-analysis of preclinical studies. Stem Cells Transl Med. 2017;6:2079–93.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cofano F, Boido M, Monticelli M, Zenga F, Ducati A, Vercelli A, et al. Mesenchymal stem cells for spinal cord injury: current options, limitations, and future of cell therapy. Int J Mol Sci. 2019;20:2698.

    Article  CAS  PubMed Central  Google Scholar 

  16. McDonald CA, Fahey MC, Jenkin G, Miller SL. Umbilical cord blood cells for treatment of cerebral palsy; timing and treatment options. Pediatr Res. 2018;83:333–44.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Y, Li Y, Zhang L, Li J, Zhu C. Mesenchymal stem cells: potential application for the treatment of hepatic cirrhosis. Stem Cell Res Ther. 2018;9:59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li L, Li F, Gao F, Yang Y, Liu Y, Guo P, et al. Transplantation of mesenchymal stem cells improves type 1 diabetes mellitus. Cell Tissue Res. 2016;364:345–55.

    Article  CAS  PubMed  Google Scholar 

  19. Paula AC, Martins TM, Zonari A, Frade SP, Angelo PC, Gomes DA, et al. Human adipose tissue-derived stem cells cultured in xeno-free culture condition enhance c-MYC expression increasing proliferation but bypassing spontaneous cell transformation. Stem Cell Res Ther. 2015;6:76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Cimino M, Gonçalves RM, Barrias CC, Martins MCL. Xeno-free strategies for safe human mesenchymal stem/stromal cell expansion: supplements and coatings. Stem Cells Int. 2017;2017:6597815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Venugopal P, Balasubramanian S, Majumdar AS, Ta M. Isolation, characterization, and gene expression analysis of Wharton's jelly-derived mesenchymal stem cells under xeno-free culture conditions. Stem Cells Cloning. 2011;4:39–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tonti GA, Mannello F. From bone marrow to therapeutic applications: different behaviour and genetic/epigenetic stability during mesenchymal stem cell expansion in autologous and foetal bovine sera? Int J Dev Biol. 2008;52:1023–32.

    Article  PubMed  Google Scholar 

  23. Jung S, Panchalingam KM, Rosenberg L, Behie LA. Ex vivo expansion of human mesenchymal stem cells in defined serum-free media. Stem Cells Int. 2012;2012:123030.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Julavijitphong S, Wichitwiengrat S, Tirawanchai N, Ruangvutilert P, Vantanasiri C, Phermthai T. A xeno-free culture method that enhances Wharton's jelly mesenchymal stromal cell culture efficiency over traditional animal serum-supplemented cultures. Cytotherapy. 2014;16:683–91.

    Article  CAS  PubMed  Google Scholar 

  25. Cooper K, SenMajumdar A, Viswanathan C. Derivation, expansion and characterization of clinical grade mesenchymal stem cells from umbilical cord matrix using cord blood serum. Int J Stem Cells. 2010;3:119–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Caseiro AR, Ivanova G, Pedrosa SS, Branquinho MV, Georgieva P, Barbosa PP, et al. Human umbilical cord blood plasma as an alternative to animal sera for mesenchymal stromal cells in vitro expansion - A multicomponent metabolomic analysis. PLoS One. 2018;13:e0203936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ehrhart J, Sanberg PR, Garbuzova-Davis S. Plasma derived from human umbilical cord blood: Potential cell-additive or cell-substitute therapeutic for neurodegenerative diseases. J Cell Mol Med. 2018;22:6157–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kandoi S, Praveen Kumar L, Patra B, Vidyasekar P, Sivanesan D, Vijayalakshmi S, et al. Evaluation of platelet lysate as a substitute for FBS in explant and enzymatic isolation methods of human umbilical cord MSCs. Sci Rep. 2018;8:12439.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Schallmoser K, Henschler R, Gabriel C, Koh MBC, Burnouf T. Production and quality requirements of human platelet lysate: a position statement from the working party on cellular therapies of the international society of blood transfusion. Trends Biotechnol. 2020;38:13–23.

    Article  CAS  PubMed  Google Scholar 

  30. Blazquez-Prunera A, Almeida CR, Barbosa MA. Human bone marrow mesenchymal stem/stromal cells preserve their immunomodulatory and chemotactic properties when expanded in a human plasma derived xeno-free medium. Stem Cells Int. 2017;2017:2185351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Blazquez-Prunera A, Diez JM, Gajardo R, Grancha S. Human mesenchymal stem cells maintain their phenotype, multipotentiality, and genetic stability when cultured using a defined xeno-free human plasma fraction. Stem Cell Res Ther. 2017;8:103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Diez JM, Bauman E, Gajardo R, Jorquera JI. Culture of human mesenchymal stem cells using a candidate pharmaceutical grade xeno-free cell culture supplement derived from industrial human plasma pools. Stem Cell Res Ther. 2015;6:28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Cimino M, Gonçalves RM, Bauman E, Barroso-Vilares M, Logarinho E, Barrias CC, et al. Optimization of the use of a pharmaceutical grade xeno-free medium for in vitro expansion of human mesenchymal stem/stromal cells. J Tissue Eng Regen Med. 2018;12:e1785–95.

    Article  CAS  PubMed  Google Scholar 

  34. Swamynathan P, Venugopal P, Kannan S, Thej C, Kolkundar U, Bhagwat S, et al. Are serum-free and xeno-free culture conditions ideal for large scale clinical grade expansion of Wharton's jelly derived mesenchymal stem cells? A comparative study. Stem Cell Res Ther. 2014;5:88.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Al-Saqi SH, Saliem M, Asikainen S, Quezada HC, Ekblad A, Hovatta O, et al. Defined serum-free media for in vitro expansion of adipose-derived mesenchymal stem cells. Cytotherapy. 2014;16:915–26.

    Article  CAS  PubMed  Google Scholar 

  36. Simões IN, Boura JS, dos Santos F, Andrade PZ, Cardoso CM, Gimble JM, et al. Human mesenchymal stem cells from the umbilical cord matrix: successful isolation and ex vivo expansion using serum-/xeno-free culture media. Biotechnol J. 2013;8:448–58.

    Article  PubMed  CAS  Google Scholar 

  37. Wu X, Kang H, Liu X, Gao J, Zhao K, Ma Z. Serum and xeno-free, chemically defined, no-plate-coating-based culture system for mesenchymal stromal cells from the umbilical cord. Cell Prolif. 2016;49:579–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. Int Soc Cell Therapy pos statement. 2006;8:315–7.

    CAS  Google Scholar 

  39. Oikonomopoulos A, van Deen WK, Manansala AR, Lacey PN, Tomakili TA, Ziman A, et al. Optimization of human mesenchymal stem cell manufacturing: the effects of animal/xeno-free media. Sci Rep. 2015;5:16570.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mojica-Henshaw MP, Jacobson P, Morris J, Kelley L, Pierce J, Boyer M, et al. Serum-converted platelet lysate can substitute for fetal bovine serum in human mesenchymal stromal cell cultures. Cytotherapy. 2013;15:1458–68.

    Article  CAS  PubMed  Google Scholar 

  41. Brohlin M, Kelk P, Wiberg M, Kingham PJ. Effects of a defined xeno-free medium on the growth and neurotrophic and angiogenic properties of human adult stem cells. Cytotherapy. 2017;19:629–39.

    Article  CAS  PubMed  Google Scholar 

  42. Bobis-Wozowicz S, Kmiotek K, Kania K, Karnas E, Labedz-Maslowska A, Sekula M, et al. Diverse impact of xeno-free conditions on biological and regenerative properties of hUC-MSCs and their extracellular vesicles. J Mol Med (Berl). 2017;95:205–20.

    Article  CAS  Google Scholar 

  43. Gottipamula S, Ashwin KM, Muttigi MS, Kannan S, Kolkundkar U, Seetharam RN. Isolation, expansion and characterization of bone marrow-derived mesenchymal stromal cells in serum-free conditions. Cell Tissue Res. 2014;356:123–35.

    Article  CAS  PubMed  Google Scholar 

  44. Riordan NH, Madrigal M, Reneau J, de Cupeiro K, Jiménez N, Ruiz S, et al. Scalable efficient expansion of mesenchymal stem cells in xeno free media using commercially available reagents. J Transl Med. 2015;13:232.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Xia W, Li H, Wang Z, Xu R, Fu Y, Zhang X, et al. Human platelet lysate supports ex vivo expansion and enhances osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Cell Biol Int. 2011;35:639–43.

    Article  CAS  PubMed  Google Scholar 

  46. Shetty P, Bharucha K, Tanavde V. Human umbilical cord blood serum can replace fetal bovine serum in the culture of mesenchymal stem cells. Cell Biol Int. 2007;31:293–8.

    Article  CAS  PubMed  Google Scholar 

  47. Rauch C, Feifel E, Amann EM, Spötl HP, Schennach H, Pfaller W, et al. Alternatives to the use of fetal bovine serum: human platelet lysates as a serum substitute in cell culture media. ALTEX. 2011;28:305–16.

    Article  PubMed  Google Scholar 

  48. Saeedi P, Halabian R, Imani Fooladi AA. A revealing review of mesenchymal stem cells therapy, clinical perspectives and modification strategies. Stem Cell Investig. 2019;6:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shi Y, Wang Y, Li Q, Liu K, Hou J, Shao C, et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol. 2018;14:493–507.

    Article  CAS  PubMed  Google Scholar 

  50. Liu F, Li Y, Bai L, Yang Z, Liao G, Chen Y, et al. Immunomodulatory effects of rhesus monkey bone marrow-derived mesenchymal stem cells in serum-free conditions. Int Immunopharmacol. 2018;64:364–71.

    Article  CAS  PubMed  Google Scholar 

  51. Hartmann I, Hollweck T, Haffner S, Krebs M, Meiser B, Reichart B, et al. Umbilical cord tissue-derived mesenchymal stem cells grow best under GMP-compliant culture conditions and maintain their phenotypic and functional properties. J Immunol Methods. 2010;363:80–9.

    Article  CAS  PubMed  Google Scholar 

  52. Wuchter P, Vetter M, Saffrich R, Diehlmann A, Bieback K, Ho AD, et al. Evaluation of GMP-compliant culture media for in vitro expansion of human bone marrow mesenchymal stromal cells. Exp Hematol. 2016;44:508–18.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uyen Thi Trang Than.

Ethics declarations

Conflict of interest

The authors have no conflicts to declare.

Ethical statement

There are no animal experiments carried out for this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bui, H.T.H., Nguyen, L.T. & Than, U.T.T. Influences of Xeno-Free Media on Mesenchymal Stem Cell Expansion for Clinical Application. Tissue Eng Regen Med 18, 15–23 (2021). https://doi.org/10.1007/s13770-020-00306-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-020-00306-z

Keywords

Navigation