Skip to main content
Log in

Tissue engineering of articular cartilage: From bench to bed-side

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Degeneration or defect of articular cartilage is a major predicament and if it is left untreated, it may lead to progressive damage and disability affecting every one disregard of their age. Although nonsurgical management of articular cartilage injury has remained largely the same over many years, surgical treatment keeps on evolving. Restorative techniques, mainly the cell-based therapies and autologous or allograft transplants continue to expand, giving surgeons more options for biologic reconstruction of the articular surfaces. Hence the field of articular cartilage tissue engineering which seeks to repair, restore and improve injured or diseased articular cartilage functionality has aroused deep interest and holds great potential for improving articular cartilage therapy. However despite this great evolution, therapeutic uncertainty in the restoration of damaged cartilage using tissue engineering approaches still remains unclear for the surgeon treating patients to make evidence-based decisions. This paper will give a general idea to different level of audiences in understanding the concept of tissue engineering from bench to bed-side regarding recent developments in this exciting field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K Tur, Biomaterials and Tissue Engineering for Regenerative Repair of Articular Cartilage Defects Turkish J Rheumatol, 24, 206 (2009).

    Google Scholar 

  2. U Meyer, T Meyer, J Handschel, et al., in Regen. Med., U Meyer, J Handschel, HP Wiesmann & T Meyer 7, 1076 Springer Berlin Heidelberg, (2009).

  3. R Langer, JP Vacanti, Tissue engineering, Science, 260, 920 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. C Chung, JA Burdick, Engineering cartilage tissue, Adv Drug Deliv Rev, 60, 243 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. M Pavlovic, B Balint, Stem Cells and Tissue Engineering, Nature, Springer New York, (2013). doi:10.1007/978-1-4614-5505-9

    Google Scholar 

  6. EH Lee, JHP Hui, The potential of stem cells in orthopaedic surgery, J Bone Joint Surg. Br., 88, 841 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. M Ratajczak, E Zuba-Surma, Very small embryonic-like stem cells: characterization, developmental origin, and biological significance, J Exp Med, 36, 742 (2008).

    CAS  Google Scholar 

  8. B Balint, D Stamatoviæ, M Todoroviæ, Stem cells in the arrangement of bone marrow repopulation and regenerative medicine, Vojnosanit Pregl, 481 (2007).

    Google Scholar 

  9. C Vinatier, D Mrugala, C Jorgensen, et al., Cartilage engineering: a crucial combination of cells, biomaterials and biofactors., Trends Biotechnol, 27, 307 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. P Zuk, M Zhu, H Mizuno, et al., Multilineage cells from human adipose tissue: implications for cell-based therapies Tissue Eng, 7, 211 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. M Nawata, S Wakitani, H Nakaya, et al., Use of bone morphogenetic protein 2 and diffusion chambers to engineer cartilage tissue for the repair of defects in articular cartilage Arthritis Rheum, 52, 155 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Y Sakaguchi, I Sekiya, K Yagishita, et al., Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source Arthritis Rheum, 52, 2521 (2005).

    Article  PubMed  Google Scholar 

  13. ZH Wang, XL Li, XJ He, et al., Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model Braz J Med Biol Res, 47, 279 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. M Shaban, S Cassim, F Hussein, The Re-Expression of Collagen Type 2, Aggrecan and Sox 9 in Tissue-Engineered Human Articular Cartilage, Tissue Eng Regen Med 2, 347 (2005).

    Google Scholar 

  15. S Munirah, Tissue-engineered human articular cartilage demonstrates intense immunopositivity for collagen type II, J Biosci, 17, 9 (2006).

    Google Scholar 

  16. PC Kreuz, C Gentili, B Samans, et al., Scaffold-assisted cartilage tissue engineering using infant chondrocytes from human hip cartilage, Osteoarthritis Cartilage, 21, 1997 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. M Brittberg, A Lindahl, Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation, N Engl J Med, 331, 889 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. D Puppi, F Chiellini, AM Piras, et al., Polymeric materials for bone and cartilage repair, Prog Polym Sci, 35, 403 (2010).

    Article  CAS  Google Scholar 

  19. CM Chhavi, Sharma, Sneh, et al., Cartilage tissue engineering: current scenario and challenges, Adv Mater Lett, 2, 90 (2011).

    Article  Google Scholar 

  20. RL Burdick, Jason A., Mauck, Biomaterials for Tissue Engineering Applications, Springer Vienna, (2011). doi:10.1007/978-3-7091-0385-2

    Book  Google Scholar 

  21. H Chiang, C-C Jiang, Repair of articular cartilage defects: review and perspectives J Formos Med Assoc, 108, 87 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. LA Solchaga, JU Yoo, M Lundberg, et al., Hyaluronan-based polymers in the treatment of osteochondral defects J Orthop Res, 18, 773 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. W Knudson, B Casey, Y Nishida, et al., Hyaluronan oligosaccharides perturb cartilage matrix homeostasis and induce chondrocytic chondrolysis Arthritis Rheum, 43, 1165 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. AM Haleem, CR Chu, Advances in Tissue Engineering Techniques for Articular Cartilage Repair, Oper Tech Orthop, 20, 76 (2010).

    Article  Google Scholar 

  25. KA Athanasiou, EM Darling, JC Hu, Articular Cartilage Tissue Engineering, Synth Lect Tissue Eng, 1, 1 (2009).

    Google Scholar 

  26. HJ Häuselmann, RJ Fernandes, SS Mok, et al., Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads, J Cell Sci 107 (Pt 1, 17 (1994).

    Google Scholar 

  27. SH Elder, S a. Goldstein, JH Kimura, et al., Chondrocyte Differentiation is Modulated by Frequency and Duration of Cyclic Compressive Loading, Ann Biomed Eng, 29, 476 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. JK Suh, HW Matthew, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review Biomaterials, 21, 2589 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. SE Kim, JH Park, YW Cho, et al., Porous chitosan scaffold containing microspheres loaded with transforming growth factor-beta1: implications for cartilage tissue engineering, J Control Release, 91, 365 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. P Visna, L Pasa, I Cizmár, et al., Treatment of deep cartilage defects of the knee using autologous chondrograft transplantation and by abrasive techniques—a randomized controlled study, Acta Chir. Belg, 104, 709 (2004).

    CAS  PubMed  Google Scholar 

  31. RP Silverman, D Passaretti, W Huang, et al., Injectable tissueengineered cartilage using a fibrin glue polymer, Plast Reconstr Surg, 103, 1809 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. KF Almqvist, L Wang, J Wang, et al., Culture of chondrocytes in alginate surrounded by fibrin gel: characteristics of the cells over a period of eight weeks, Ann Rheum Dis, 60, 781 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. E V Dare, M Griffith, P Poitras, et al., Genipin cross-linked fibrin hydrogels for in vitro human articular cartilage tissue-engineered regeneration, Cells Tissues Organs, 190, 313 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. HK Kleinman, RJ Klebe, GR Martin, Role of collagenous matrices in the adhesion and growth of cells, J Cell Biol, 88, 473 (1981).

    Article  CAS  PubMed  Google Scholar 

  35. Q Zhang, S Yan, M Li, Silk Fibroin Based Porous Materials, Materials (Basel), 2, 2276 (2009).

    Article  CAS  Google Scholar 

  36. V Kearns, A MacIntosh, A Crawford, et al., Silk-based biomaterials for tissue engineering, Top Tissue Eng, 4, 1 (2008).

    Google Scholar 

  37. S Munirah, SH Kim, BH Ruszymah, et al., The use of fibrin and poly(lactic-co-glycolic acid) hybrid scaffold for articular cartilage tissue engineering: an in vivo analysis, Eur Cell Mater, 15, 41 (2008).

    CAS  PubMed  Google Scholar 

  38. S Munirah, BHI Ruszymah, OC Samsudin, et al., Autologous versus pooled human serum for articular chondrocyte growth, J Orthop Surg (Hong Kong), 16, 220 (2008).

    CAS  Google Scholar 

  39. M Sha’ban, SH Kim, RB Idrus, et al., Fibrin and poly(lactic-co-glycolic acid) hybrid scaffold promotes early chondrogenesis of articular chondrocytes: an in vitro study, J Orthop Surg Res, 3, 17 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  40. NK Lee, HJ Oh, CM Hong, et al., Comparison of the synthetic biodegradable polymers, polylactide (PLA), and polylactic-co-glycolic acid (PLGA) as scaffolds for artificial cartilage, Biotechnol Bioprocess Eng, 14, 180 (2009).

    Article  CAS  Google Scholar 

  41. R Jin, LS Moreira Teixeira, PJ Dijkstra, et al., Enzymatically crosslinked dextran-tyramine hydrogels as injectable scaffolds for cartilage tissue engineering, Tissue Eng Part A, 16, 2429 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. YH An, D Webb, A Gutowska, VA Mironov, RJ Friedman, Regaining chondrocyte phenotype in thermosensitive gel culture, Anat Rec, 263, 336 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. JP Fisher, S Jo, AG Mikos, a H Reddi, Thermoreversible hydrogel scaffolds for articular cartilage engineering, J Biomed Mater Res A, 71, 268 (2004).

    Article  PubMed  Google Scholar 

  44. TA Holland, Y Tabata, AG Mikos, Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering, J Control Release, 101, 111 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. M Iwasaki, K Nakata, H Nakahara, et al., Transforming growth factor-beta 1 stimulates chondrogenesis and inhibits osteogenesis in high density culture of periosteum-derived cells, Endocrinology, 132, 1603 (1993).

    CAS  PubMed  Google Scholar 

  46. NS Hwang, MS Kim, S Sampattavanich, et al., Effects of three-dimensional culture and growth factors on the chondrogenic differentiation of murine embryonic stem cells, Stem Cells, 24, 284 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. R Tuli, S Tuli, S Nandi, et al., Transforming growth factor-beta-mediated chondrogenesis of human mesenchymal progenitor cells involves N-cadherin and mitogen-activated protein kinase and Wnt signaling cross-talk, J Biol Chem., 278, 41227 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. T Fukumoto, Combined effects of insulin-like growth factor-1 and transforming growth factor-β1 on periosteal mesenchymal cells during chondrogenesis in vitro, Osteoarthr Cartil, 11, 55 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. S Miot, P Scandiucci de Freitas, D Wirz, et al., Cartilage tissue engineering by expanded goat articular chondrocytes, J Orthop Res 24, 1078 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. N Veilleux, M Spector, Effects of FGF-2 and IGF-1 on adult canine articular chondrocytes in type II collagen-glycosaminoglycan scaffolds in vitro, Osteoarthritis Cartilage, 13, 278 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. T Fujisato, T Sajiki, Q Liu, Y Ikada, Effect of basic fibroblast growth factor on cartilage regeneration in chondrocyte-seeded collagen sponge scaffold, Biomaterials, 17, 155 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Y Park, M Sugimoto, A Watrin, et al., BMP-2 induces the expression of chondrocyte-specific genes in bovine synovium-derived progenitor cells cultured in three-dimensional alginate hydrogel, Osteoarthritis Cartilage, 13, 527 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. DL Hicks, AB Sage, E Shelton, et al., Effect of bone morphogenetic proteins 2 and 7 on septal chondrocytes in alginate, Otolaryngol Neck Surg, 136, 373 (2007).

    Article  Google Scholar 

  54. SR Frenkel, PB Saadeh, BJ Mehrara, et al., Transforming growth factor beta superfamily members: role in cartilage modeling., Plast Reconstr Surg, 105, 980 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. C Kaps, C Bramlage, H Smolian, et al., Bone morphogenetic proteins promote cartilage differentiation and protect engineered artificial cartilage from fibroblast invasion and destruction, Arthritis Rheum, 46, 149 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. B Sharma, CG Williams, M Khan, et al., In vivo chondrogenesis of mesenchymal stem cells in a photopolymerized hydrogel, Plast Reconstr Surg, 119, 112 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Food and Drug Administration (FDA), Guidance for industry: preparation of IDEs and INDs for products intended to repair or replace knee cartilage, Cent Biol Eval Res, (2011).

    Google Scholar 

  58. D Deponti, A Di Giancamillo, L Mangiavini, et al., Fibrin-based model for cartilage regeneration: tissue maturation from in vitro to in vivo, Tissue Eng. Part A, 18, 1109 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. E Duval, C Baug, R Andriamanalijaona, et al., Molecular mechanism of hypoxia-induced chondrogenesis and its application in in vivo cartilage tissue engineering, Biomaterials, 33, 6042 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. TS Onur, R Wu, S Chu, et al., Joint instability and cartilage compression in a mouse model of posttraumatic osteoarthritis, J Orthop Res, 32, 318 (2014).

    Article  PubMed  Google Scholar 

  61. D Ollitrault, F Legendre, C Drougard, et al., BMP-2, hypoxia, and COL1A1/HtrA1 siRNAs favor neo-cartilage hyaline matrix formation in chondrocytes., Tissue Eng Part C. Methods, (2014). doi:10.1089/ten.TEC.2013.0724

    Google Scholar 

  62. BJ Ahern, J Parvizi, R Boston, et al., Preclinical animal models in single site cartilage defect testing: a systematic review, Osteoarthritis Cartilage, 17, 705 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. H Matsuda, N Kitamura, T Kurokawa, et al., Influence of the gel thickness on in vivo hyaline cartilage regeneration induced by double-network gel implanted at the bottom of a large osteochondral defect: short-term results, BMC Musculoskelet. Disord, 14, 50 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. A Xie, L Nie, G Shen, et al., The application of autologous platelet-rich plasma gel in cartilage regeneration, Mol Med Rep, (2014). doi:10.3892/mmr.2014.2358

    Google Scholar 

  65. SR Ghorayeb, A Levin, M Ast, et al., Sonographic evaluation of knee cartilage defects implanted with preconditioned scaffolds, J Ultrasound Med, 33, 1241 (2014).

    Article  PubMed  Google Scholar 

  66. DA Bichara, I Pomerantseva, X Zhao, et al., Successful creation of tissue-engineered autologous auricular cartilage in an immunocompetent large animal model, Tissue Eng Part A, 20, 303 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. P Orth, H-L Meyer, L Goebel, et al., Improved repair of chondral and osteochondral defects in the ovine trochlea compared with the medial condyle, J Orthop Res 31, 1772 (2013).

    CAS  PubMed  Google Scholar 

  68. Y Itani, S Asamura, M Matsui, et al., Evaluation of nanofiber-based polyglycolic acid scaffolds for improved chondrocyte retention and in vivo bioengineered cartilage regeneration., Plast Reconstr Surg, 133, 805e (2014).

    Article  CAS  PubMed  Google Scholar 

  69. JA Szivek, GJ Heden, CP Geffre, et al., In vivo telemetric determination of shear and axial loads on a regenerative cartilage scaffold following ligament disruption, J Biomed Mater Res B Appl Biomater, (2014). doi:10.1002/jbm.b.33120

    Google Scholar 

  70. N Kang, X Liu, Y Cao, et al., Comparison study of tissue engineered cartilage constructed with chondrocytes derived from porcine auricular and articular cartilage, Zhonghua Zheng Xing Wai Ke Za Zhi, 30, 33 (2014).

    PubMed  Google Scholar 

  71. M Derks, T Sturm, A Haverich, et al., Isolation and chondrogenic differentiation of porcine perichondrial progenitor cells for the purpose of cartilage tissue engineering, Cells Tissues Organs, 198, 179 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. S Miot, W Brehm, S Dickinson, et al., Influence of in vitro maturation of engineered cartilage on the outcome of osteochondral repair in a goat model, Eur Cell Mater, 23, 222 (2012).

    CAS  PubMed  Google Scholar 

  73. L Jeng, H-P Hsu, M Spector, Tissue-engineered cartilaginous constructs for the treatment of caprine cartilage defects, including distribution of laminin and type IV collagen, Tissue Eng Part A, 19, 2267 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. WJFM Jurgens, RJ Kroeze, B Zandieh-Doulabi, et al., One-step surgical procedure for the treatment of osteochondral defects with adipose-derived stem cells in a caprine knee defect: a pilot study, Biores Open Access, 2, 315 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. LE Litzke, E Wagner, W Baumgaertner, et al., Repair of extensive articular cartilage defects in horses by autologous chondrocyte transplantation, Ann Biomed Eng, 32, 57 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. DD Frisbie, Y Lu, CE Kawcak, et al., In vivo evaluation of autologous cartilage fragment-loaded scaffolds implanted into equine articular defects and compared with autologous chondrocyte implantation Am J Sports Med, 37 Suppl 1, 71S (2009).

    Article  PubMed  Google Scholar 

  77. DD Frisbie, MW Cross, CW McIlwraith, A comparative study of articular cartilage thickness in the stifle of animal species used in human pre-clinical studies compared to articular cartilage thickness in the human knee, Vet Comp Orthop Traumatol, 19, 142 (2006).

    CAS  PubMed  Google Scholar 

  78. A Siclari, G Mascaro, C Gentili, et al., Cartilage repair in the knee with subchondral drilling augmented with a platelet-rich plasma-immersed polymer-based implant, Knee Surg Sports Traumatol Arthrosc, 22, 1225 (2014).

    Article  PubMed  Google Scholar 

  79. K Freedman, S Coleman, C Olenac, et al., The biology of articular cartilage injury and the microfracture technique for the treatment of articular cartilage lesions, Semin Arthroplasty, 13, 2002 (2002).

    Google Scholar 

  80. S Ulstein, A Arøen, JH Røtterud, et al., Microfracture technique versus osteochondral autologous transplantation mosaicplasty in patients with articular chondral lesions of the knee: a prospective randomized trial with long-term follow-up, Knee Surg Sports Traumatol Arthrosc, 22, 1207 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  81. Y Yen, B Cascio, L O’Brien, et al., Treatment of osteoarthritis of the knee with microfracture and rehabilitation, Med Sci Sports Exerc, 40, 200 (2008).

    Article  PubMed  Google Scholar 

  82. MM Reverte-Vinaixa, N Joshi, EW Diaz-Ferreiro, et al., Medium-term outcome of mosaicplasty for grade III–IV cartilage defects of the knee, J Orthop Surg (Hong Kong), 21, 4 (2013).

    Google Scholar 

  83. M Brittberg, A Lindahl, A Nilsson, et al., Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation, N Engl J Med 331, 889 (1994).

    Article  CAS  PubMed  Google Scholar 

  84. C Vinatier, C Bouffi, C Merceron, et al., Cartilage tissue engineering: towards a biomaterial-assisted mesenchymal stem cell therapy, Curr Stem Cell Res Ther, 4, 318 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. C-H Chang, F-H Lin, T-F Kuo, et al., Cartilage Tissue Engineering, Biomed Eng Appl Basis Commun, 17, 61 (2005).

    Article  Google Scholar 

  86. RA Magnussen, WR Dunn, JL Carey, et al., Treatment of focal articular cartilage defects in the knee: a systematic review, Clin. Orthop Relat Res, 466, 952 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  87. P Cherubino, FA Grassi, P Bulgheroni, et al., Autologous chondrocyte implantation using a bilayer collagen membrane: a preliminary report, J Orthop Surg (Hong Kong), 11, 10 (2003).

    CAS  Google Scholar 

  88. SH Kim, DY Park, B Min, A new era of cartilage repair using cell therapy and tissue engineering: turning current clinical limitations into new ideas, Tissue Eng Regen Med, 9, 240 (2012).

    Article  CAS  Google Scholar 

  89. DR Pedersen, JE Goetz, GL Kurriger, et al., Comparative digital cartilage histology for human and common osteoarthritis models, Orthop Res Rev, 2013, 13 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  90. O Snead, Public Bioethics and the Bush Presidency, Harv JL Pub Pol’y, (2009).

    Google Scholar 

  91. RE Horch, LM Pepescu, C Vacanti, et al., Ethical issues in cellular and molecular medicine and tissue engineering, J Cell Mol Med, 12, 1785 (2008).

    Article  PubMed  Google Scholar 

  92. D Jones, Bioethics in Practice A Quarterly Column About Medical Ethics, Ochsner J, 13, 8 (2013).

    PubMed Central  PubMed  Google Scholar 

  93. L Cristea, A Pascu, Ethics and Human Behaviour — Two Topics for Medical Engineering Students, in 4th WSEAS/IASME Int. Conf Educ Technol, 87 (2008).

    Google Scholar 

  94. W Hunter, Of the structure and disease of articulating cartilages. 1743, Clin Orthop Relat Res, 3 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munirah Sha’ban.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, R.A., Radzi, M.A.A., Sukri, N.M. et al. Tissue engineering of articular cartilage: From bench to bed-side. Tissue Eng Regen Med 12, 1–11 (2015). https://doi.org/10.1007/s13770-014-9044-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-014-9044-8

Key words

Navigation