Skip to main content
Log in

Efficacy of chorionic plate-derived mesenchymal stem cells isolated from placenta in CCl4-injured rat liver depends on transplantation routes

  • Original Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

The capability to engraft into degenerative environment or damaged tissues is considered crucial to maximize the therapeutic effect of stem cells in tissue regeneration. Human chorionic plate-derived mesenchymal stem cells (CP-MSCs) isolated from the placenta have been reported to have therapeutic effects in animal models of liver injury. However, the effect of transplantation route has not been evaluated. Thus, we investigated to identify optimal transplantation conditions of CP-MSCs for functional recovery of injured liver. PKH26 labeled CP-MSCs was engrafted into carbon tetrachloride (CCl4)-injured rat model through direct transplantation into the liver (DTP), intrasplenic transplantation (STP), and intravenous transplantation via the tail vein (TTP). Non transplanted (NTP) rats were maintained as sham controls. Serum and liver tissues were analyzed post 1-, 2-, 3-week after transplantation. The engraftment of cells was higher in DTP and STP group until 3-week post transplantation. In blood chemistry, the levels of glutamate-oxaloacetate transaminase (GOT/AST), glutamate-pyruvate transaminase (GPT/ALT) and total bilirubin (TBIL) in DTP and STP rats were significantly decreased compare to those of NTP rats (p < 0.01). In addition, the expression and deposition of type I collagen in DTP and STP rats was significantly reduced when they compared with NTP animals (p < 0.01). Therapeutic efficacy was better in DTP and STP rats than in TTP group. These results suggest that the administration of CP-MSCs via STP is an effective way for their therapeutic potential. These results provide useful guidelines for the application of basic transplantation technology to the cell therapy of liver disease using placenta-derived stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. NJ Torok, Recent advances in the pathogenesis and diagnosis of liver fibrosis, J Gastroenterol, 43, 315 (2008).

    Article  PubMed  CAS  Google Scholar 

  2. JP Iredale, Cirrhosis: new research provides a basis for rational and targeted treatments, BMJ, 327, 143 (2003).

    Article  PubMed  Google Scholar 

  3. SP Horslen, IJ Fox, Hepatocyte transplantation, Transplantation, 77, 1481 (2004).

    Article  PubMed  Google Scholar 

  4. S Oyagi, M Hirose, M Kojima, et al., Therapeutic effect of transplanting HGF-treated bone marrow mesenchymal cells into CCl4-injured rats, J Hepatol, 44, 742 (2006).

    Article  PubMed  CAS  Google Scholar 

  5. YQ Xu, ZC Liu, Therapeutic potential of adult bone marrow stem cells in liver disease and delivery approaches, Stem Cell Rev, 4, 101 (2008).

    Article  PubMed  Google Scholar 

  6. MS Rao, MP Mattson, Stem cells and aging: expanding the possibilities, Mech Ageing Dev, 122, 713 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. MJ Lee, J Jung, KH Na, et al., Anti-fibrotic effect of chorionic plate-derived mesenchymal stem cells isolated from human placenta in a rat model of CCl(4)-injured liver: potential application to the treatment of hepatic diseases, J Cell Biochem, 111, 1453 (2010).

    Article  PubMed  CAS  Google Scholar 

  8. CC Chien, BL Yen, FK Lee, et al., In vitro differentiation of human placenta-derived multipotent cells into hepatocyte-like cells, Stem Cells, 24, 1759 (2006).

    Article  PubMed  Google Scholar 

  9. BJ Jones, G Brooke, K Atkinson, et al., Immunosuppression by placental indoleamine 2,3-dioxygenase: a role for mesenchymal stem cells, Placenta, 28, 1174 (2007).

    Article  PubMed  CAS  Google Scholar 

  10. C Li, W Zhang, X Jiang, et al., Human-placenta-derived mesenchymal stem cells inhibit proliferation and function of allogeneic immune cells, Cell Tissue Res, 330, 437 (2007).

    Article  PubMed  Google Scholar 

  11. O Parolini, F Alviano, GP Bagnara, et al., Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells, Stem Cells, 26, 300 (2008).

    Article  PubMed  Google Scholar 

  12. JA Kode, S Mukherjee, MV Joglekar, et al., Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration, Cytotherapy, 11, 377 (2009).

    Article  PubMed  CAS  Google Scholar 

  13. S Barlow, G Brooke, K Chatterjee, et al., Comparison of human placenta- and bone marrow-derived multipotent mesenchymal stem cells, Stem Cells Dev, 17, 1095 (2008).

    Article  PubMed  CAS  Google Scholar 

  14. G Brooke, T Rossetti, R Pelekanos, et al., Manufacturing of human placenta-derived mesenchymal stem cells for clinical trials, Br J Haematol, 144, 571 (2009).

    Article  PubMed  Google Scholar 

  15. S Khaldoyanidi, Directing stem cell homing, Cell Stem Cell, 2, 198 (2008).

    Article  PubMed  CAS  Google Scholar 

  16. RJ Henning, JD Burgos, M Vasko, et al., Human cord blood cells and myocardial infarction: effect of dose and route of administration on infarct size, Cell Transplant, 16, 907 (2007).

    Article  PubMed  Google Scholar 

  17. Q Feng, PK Chow, F Frassoni, et al., Nonhuman primate allogeneic hematopoietic stem cell transplantation by intraosseus vs intravenous injection: Engraftment, donor cell distribution, and mechanistic basis, Exp Hematol, 36, 1556 (2008).

    Article  PubMed  CAS  Google Scholar 

  18. TK Kuo, SP Hung, CH Chuang, et al., Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells, Gastroenterology, 134, 2111 (2008).

    Article  PubMed  Google Scholar 

  19. MS Penn, AA Mangi, Genetic enhancement of stem cell engraftment, survival, and efficacy, Circ Res, 102, 1471 (2008).

    Article  PubMed  CAS  Google Scholar 

  20. PC Baer, H Geiger, Mesenchymal stem cell interactions with growth factors on kidney repair, Curr Opin Nephrol Hypertens, 19, 1 (2010).

    Article  PubMed  CAS  Google Scholar 

  21. B D’Agostino, N Sullo, D Siniscalco, et al., Mesenchymal stem cell therapy for the treatment of chronic obstructive pulmonary disease, Expert Opin Biol Ther, 10, 681 (2010).

    Article  PubMed  Google Scholar 

  22. X Bai, Y Yan, M Coleman, et al., Tracking long-term survival of intramyocardially delivered human adipose tissue-derived stem cells using bioluminescence imaging, Mol Imaging Biol, 13, 633 (2010).

    Article  Google Scholar 

  23. M Miyazaki, M Hardjo, T Masaka, et al., Isolation of a bone marrow-derived stem cell line with high proliferation potential and its application for preventing acute fatal liver failure, Stem Cells, 25, 2855 (2007).

    Article  PubMed  CAS  Google Scholar 

  24. A Banas, T Teratani, Y Yamamoto, et al., Rapid hepatic fate specification of adipose-derived stem cells and their therapeutic potential for liver failure, J Gastroenterol Hepatol, 24, 70 (2009).

    Article  PubMed  CAS  Google Scholar 

  25. SP Lam, JM Luk, K Man, et al., Activation of interleukin-6-induced glycoprotein 130/signal transducer and activator of transcription 3 pathway in mesenchymal stem cells enhances hepatic differentiation, proliferation, and liver regeneration, Liver Transpl, 16, 1195 (2010).

    Article  PubMed  Google Scholar 

  26. P Kharaziha, PM Hellstrom, B Noorinayer, et al., Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: a phase I–II clinical trial, Eur J Gastroenterol Hepatol, 21, 1199 (2009).

    Article  PubMed  CAS  Google Scholar 

  27. DC Zhao, JX Lei, R Chen, et al., Bone marrow-derived mesenchymal stem cells protect against experimental liver fibrosis in rats, World J Gastroenterol, 11, 3431 (2005).

    PubMed  Google Scholar 

  28. PC Tsai, TW Fu, YM Chen, et al., The therapeutic potential of human umbilical mesenchymal stem cells from Wharton’s jelly in the treatment of rat liver fibrosis, Liver Transpl, 15, 484 (2009).

    Article  PubMed  Google Scholar 

  29. T Nakamura, T Torimura, M Sakamoto, et al., Significance and therapeutic potential of endothelial progenitor cell transplantation in a cirrhotic liver rat model, Gastroenterology, 133, 91 (2007).

    Article  PubMed  CAS  Google Scholar 

  30. KL Streetz, T Luedde, MP Manns, et al., Interleukin 6 and liver regeneration, Gut, 47, 309 (2000).

    Article  PubMed  CAS  Google Scholar 

  31. T Wuestefeld, C Klein, KL Streetz, et al., Interleukin-6/glycoprotein 130-dependent pathways are protective during liver regeneration, J Biol Chem, 278, 11281 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. GA Tiberio, L Tiberio, A Benetti, et al., IL-6 Promotes compensatory liver regeneration in cirrhotic rat after partial hepatectomy, Cytokine, 42, 372 (2008).

    Article  PubMed  CAS  Google Scholar 

  33. P Semedo, CG Palasio, CD Oliveira, et al., Early modulation of inflammation by mesenchymal stem cell after acute kidney injury, Int Immunopharmacol, 9, 677 (2009).

    Article  PubMed  CAS  Google Scholar 

  34. G Ren, X Zhao, L Zhang, et al., Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression, J Immunol, 184, 2321 (2010).

    Article  PubMed  CAS  Google Scholar 

  35. M Magatti, SD Munari, E Vertua, et al., Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities, Stem Cells, 26, 182 (2008).

    Article  PubMed  CAS  Google Scholar 

  36. U Dierssen, N Beraza, HH Lutz, et al., Molecular dissection of gp130-dependent pathways in hepatocytes during liver regeneration, J Biol Chem, 283, 9886 (2008).

    Article  PubMed  CAS  Google Scholar 

  37. A Blindenbacher, X Wang, I Langer, et al., Interleukin 6 is important for survival after partial hepatectomy in mice, Hepatology, 38, 674 (2003).

    Article  PubMed  CAS  Google Scholar 

  38. X Ren, B Hu, L Colletti, Stem cell factor and its receptor, c-kit, are important for hepatocyte proliferation in wild-type and tumor necrosis factor receptor-1 knockout mice after 70% hepatectomy, Surgery, 143, 790 (2008).

    Article  PubMed  Google Scholar 

  39. MG Cherian, YJ Kang, Metallothionein and liver cell regeneration, Exp Biol Med (Maywood), 231, 138 (2006).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seong-Gyu Hwang or Gi Jin Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, J., Na, KH., Lee, MJ. et al. Efficacy of chorionic plate-derived mesenchymal stem cells isolated from placenta in CCl4-injured rat liver depends on transplantation routes. Tissue Eng Regen Med 10, 10–17 (2013). https://doi.org/10.1007/s13770-013-0364-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-013-0364-x

Key words

Navigation