Abstract
The race for technological advancement and the thirst for development demands a lot from our diminishing conventional energy sources. Fossil fuels are extensively being burnt to satisfy the world’s energy demand. In the last decade, the amount of exhaust gases from burning fossil fuels has skyrocketed, changing the atmosphere. These gases have adversely affected the environment. CO2 is one of the most abundant anthropogenic gases and a major cause of global warming. CO2 levels have risen significantly to 420 ppm from 350 ppm in the last 20 years and will continue to rise if action is not taken soon. Environmentalists have raised awareness of this issue around the world, and significant progress has been made in lowering the emission of anthropogenic CO2; nonetheless, environmental restoration still has to be done. Photocatalysis provides a rather unique solution to this severe problem. A photocatalytic CO2 reduction process mimicking natural photosynthesis is a cost-effective, clean, environmentally friendly and promising strategy for converting CO2 into fuels such as CH4, CH3OH and CHOH. This study emphasizes the photocatalysis mechanism, the charge transfer pattern and the CO2 reduction phenomenon altogether. The different enhancement strategies that have been employed, their CO2 reduction pathways, mechanisms, merits and limitations have been discussed. This technology is still in its early stages and requires much work to improve, but it will have a great impact in the future.
Graphical abstract













Copyright Elsevier 2019

Copyright Elsevier 2018



Copyright Elsevier 2021


Copyright Elsevier 2022


Copyright John Wiley and Sons 2018. c Actualization of Z-scheme in NiO/CdS nanocomposite for charge transfer mechanism d Cyclic Stability of NiO/CdS performing photocatalytic CO2 reduction over the period of 5 cycles (Low et al. 2019a). Copyright Elsevier 2022

Copyright Elsevier 2015

Copyright Elsevier 2018

Copyright Elsevier 2021


Copyright John Wiley and Sons 2021

Copyright Elsevier 2022

Copyright American Chemical Society 2021

Copyright American Chemical Society 2021

Copyright John Wiley and Sons 2021
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abe R, Shinmei K, Koumura N, Hara K, Ohtani B (2013) Visible-light-induced water splitting based on two-step photoexcitation between dye-sensitized layered niobate and tungsten oxide photocatalysts in the presence of a triiodide/iodide shuttle redox mediator. J Am Chem Soc 135(45):16872–16884. https://doi.org/10.1021/ja4048637
Acharya R, Parida K (2020) A review on TiO2/g-C3N4 visible-light- responsive photocatalysts for sustainable energy generation and environmental remediation. J Environ Chem Eng 8(4):103896. https://doi.org/10.1016/j.jece.2020.103896
Adekoya DO, Tahir M, Amin NAS (2017) g-C 3 N 4 /(Cu/TiO 2) nanocomposite for enhanced photoreduction of CO 2 to CH 3 OH and HCOOH under UV/visible light. J Util 18:261–274. https://doi.org/10.1016/j.jcou.2017.02.004
Aguirre ME, Zhou R, Eugene AJ, Guzman MI, Grela MA (2017) Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: Protecting Cu2O from photocorrosion. Appl Catal B 217:485–493. https://doi.org/10.1016/j.apcatb.2017.05.058
Ahadzi E, Ramyashree MS, Priya SS, Sudhakar K, Tahir M (2021) CO2 to green fuel: photocatalytic process optimization study. Sustain Chem Pharm 24(August):100533. https://doi.org/10.1016/j.scp.2021.100533
Ahmad K, Nazir MA, Qureshi AK, Hussain E, Najam T, Javed MS, Ashfaq M (2020) Engineering of zirconium based metal-organic frameworks (Zr-MOFs) as efficient adsorbents. Mater Sci Eng B 262:114766. https://doi.org/10.1016/J.MSEB.2020.114766
Ahmad K, Shah H, ur R, Ashfaq M, Shah S S A, Hussain E, Naseem H A, et al (2021) Effect of metal atom in zeolitic imidazolate frameworks (ZIF-8 & 67) for removal of Pb2+ & Hg2+ from water. Food Chem Toxicol 149:112008. https://doi.org/10.1016/J.FCT.2021.112008
Akple M S, Low J, Liu S, Cheng B, Yu J, Ho W (2016). Fabrication and enhanced CO2 reduction performance of N-self-doped TiO2 microsheet photocatalyst by bi-cocatalyst modification. J CO2 Utiliz, 16: 442–449. https://doi.org/10.1016/j.jcou.2016.10.009
Al Jitan S, Palmisano G, & Garlisi C, (2020) Synthesis and surface modification of TiO2-based photocatalysts for the conversion of CO2. Catalysts 10(2):227. https://doi.org/10.3390/catal10020227
Albero J, Peng Y, García H (2020) Photocatalytic CO2Reduction to C2+ products. ACS Catal 10(10):5734–5749. https://doi.org/10.1021/acscatal.0c00478
Alkanad K, Hezam A, Drmosh QA, Ganganakatte Chandrashekar SS, AlObaid AA, Warad I et al (2021) Construction of Bi2S3/TiO2/MoS2 S-scheme heterostructure with a switchable charge migration pathway for selective CO2 reduction. Solar RRL 5(11):1–13. https://doi.org/10.1002/solr.202100501
Ameta R, Solanki M S, Benjamin S, Ameta S C (2018). Photocatalysis. In Advanced Oxidation Processes for Waste Water Treatment. Elsevier, pp 135–175 https://doi.org/10.1016/B978-0-12-810499-6.00006-1
Athikaphan P, Neramittagapong S, Assawasaengrat P, Neramittagapong A (2020) Methanol production from CO2 reduction over Ni/TiO2 catalyst. Energy Rep 6:1162–1166. https://doi.org/10.1016/j.egyr.2020.11.059
BP (2020). Statistical review of world energy (http://www.bp.com/sectionbodycopy.do?categoryId=7500&contentId=7068481). Retrieved from www.bp.com/statisticalreview.
Bafaqeer A, Tahir M, Amin NAS (2019) Well-designed ZnV2O6/g-C3N4 2D/2D nanosheets heterojunction with faster charges separation via pCN as mediator towards enhanced photocatalytic reduction of CO2 to fuels. Appl Catal B 242:312–326. https://doi.org/10.1016/j.apcatb.2018.09.097
Bai S, Jiang J, Zhang Q, Xiong Y (2015) Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem Soc Rev 44(10):2893–2939. https://doi.org/10.1039/C5CS00064E
Bao Y, Song S, Yao G, Jiang S (2021) S-scheme photocatalytic systems. Solar RRL 5(7):2100118. https://doi.org/10.1002/solr.202100118
Bard AJ (1979) Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J Photochem 10(1):59–75. https://doi.org/10.1016/0047-2670(79)80037-4
Bhatkhande DS, Pangarkar VG, Beenackers AA (2002) Photocatalytic degradation for environmental applications: a review. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.532
Billo T, Fu FY, Raghunath P, Shown I, Chen WF, Lien HT et al (2018a) Ni-nanocluster modified black TiO2 with dual active sites for selective photocatalytic CO2 reduction. Small 14(2):1–11. https://doi.org/10.1002/smll.201702928
Billo T, Fu F-Y, Raghunath P, Shown I, Chen W-F, Lien H-T et al (2018b) Ni-nanocluster modified black TiO 2 with dual active sites for selective photocatalytic CO 2 reduction. Small 14(2):1702928. https://doi.org/10.1002/smll.201702928
Budzianowski WM (2013) Modelling of CO2 content in the atmosphere until 2300: Influence of energy intensity of gross domestic product and carbon intensity of energy. Int J Global Warm 5(1):1–17. https://doi.org/10.1504/IJGW.2013.051468
Chan SHS, Yeong WuT, Juan JC, Teh CY (2011) Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J Chem Technol Biotechnol 86(9):1130–1158. https://doi.org/10.1002/jctb.2636
Chang X, Wang T, Gong J (2016) CO 2 photo-reduction: insights into CO 2 activation and reaction on surfaces of photocatalysts. Energy Environ Sci 9(7):2177–2196. https://doi.org/10.1039/C6EE00383D
Chen C, Hu J, Yang X, Yang T, Qu J, Guo C, Li CM (2021) Ambient-stable black phosphorus-based 2D/2D S-scheme heterojunction for efficient photocatalytic CO 2 reduction to syngas. ACS Appl Mater Interfaces 13(17):20162–20173. https://doi.org/10.1021/acsami.1c03482
Chen L, Wang X, Chen Y, Zhuang Z, Chen FF, Zhu YJ, Yu Y (2020) Recycling heavy metals from wastewater for photocatalytic CO2 reduction. Chem Eng J 402:125922. https://doi.org/10.1016/j.cej.2020.125922
Chen W, Wang Y, Shangguan W (2019) Au as a cocatalyst loaded on solid solution Bi0.5Y0.5VO4 for enhancing photocatalytic CO2 reduction activity. Mater Lett 238:74–76. https://doi.org/10.1016/j.matlet.2018.11.150
Choi BN, Seo JY, An Z, Yoo PJ, Chung CH (2022) An in-situ spectroscopic study on the photochemical CO2 reduction on CsPbBr 3 perovskite catalysts embedded in a porous copper scaffold. Chem Eng J 430(P2):132807. https://doi.org/10.1016/j.cej.2021.132807
Danny Harvey LD (2018) Global warming: the hard science. Routledge. https://doi.org/10.4324/9781315838779
Deng H, Fei X, Yang Y, Fan J, Yu J, Cheng B, Zhang L (2021) S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity. Chem Eng J 409(2020):127377. https://doi.org/10.1016/j.cej.2020.127377
Dharani S, Vadivel S, Gnanasekaran L, Rajendran S (2023) S-scheme heterojunction photocatalysts for hydrogen production: Current progress and future prospects. Fuel 349:128688. https://doi.org/10.1016/J.FUEL.2023.128688
Di T, Xu Q, Ho WK, Tang H, Xiang Q, Yu J (2019a) Review on metal sulphide-based Z-scheme photocatalysts. ChemCatChem 11(5):1394–1411. https://doi.org/10.1002/CCTC.201802024
Dong S, Liu W, Liu S, Li F, Hou J, Hao R (2022) Single atomic Pt on amorphous ZrO2 nanowires for advanced photocatalytic CO2 reduction. Mater Today Nano. https://doi.org/10.1016/j.mtnano.2021.100157
Dou Q, Hou J, Hussain A, Zhang G, Zhang Y, Luo M et al (2022) One-pot synthesis of sodium-doped willow-shaped graphitic carbon nitride for improved photocatalytic activity under visible-light irradiation. J Colloid Interface Sci 624:79–87. https://doi.org/10.1016/J.JCIS.2022.05.085
Duan Z, Zhao X, Chen L (2021). BiVO4/Cu0.4V2O5composites as a novel Z-scheme photocatalyst for visible-light-driven CO2conversion. J Environ Chem Eng, 9(1): 104628. https://doi.org/10.1016/j.jece.2020.104628
Fallatah AM, Shah HUR, Ahmad K, Ashfaq M, Rauf A, Muneer M et al (2022) Rational synthesis and characterization of highly water stable MOF@GO composite for efficient removal of mercury (Hg2+) from water. Heliyon 8(10):e10936. https://doi.org/10.1016/J.HELIYON.2022.E10936
Fang He, Wang Z, Li Y, Peng S, Liu B (2020) The nonmetal modulation of composition and morphology of g-C3N4-based photocatalysts. Appl Catal B 269:118828. https://doi.org/10.1016/j.apcatb.2020.118828
Fei He, Meng A, Cheng B, Ho W, Yu J (2020) Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chin J Catal 41(1):9–20. https://doi.org/10.1016/S1872-2067(19)63382-6
Feng YX, Dong GX, Su K, Liu ZL, Zhang W, Zhang M, Lu TB (2022) Self-template-oriented synthesis of lead-free perovskite Cs3Bi2I9 nanosheets for boosting photocatalysis of CO2 reduction over Z-scheme heterojunction Cs3Bi2I9/CeO2. J Energy Chem 69:348–355. https://doi.org/10.1016/j.jechem.2022.01.015
Foghani MH, Tavakoli O, Parnian MJ, Zarghami R (2022) Enhanced visible light photocatalytic CO2 reduction over direct Z-scheme heterojunction Cu/P co-doped g-C3N4@TiO2 photocatalyst. Chem Pap. https://doi.org/10.1007/s11696-022-02109-z
Fu J, Xu Q, Low J, Jiang C, Yu J (2019) Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl Catal B 243:556–565. https://doi.org/10.1016/j.apcatb.2018.11.011
Ghorani-Azam A, Riahi-Zanjani B, Balali-Mood M (2016) Effects of air pollution on human health and practical measures for prevention in Iran. J Res Med Sci. https://doi.org/10.4103/1735-1995.189646
Gong H, Hao X, Jin Z, Ma Q (2019) WP modified S-scheme Zn0.5Cd0.5S/WO3 for efficient photocatalytic hydrogen production. New J Chem 43(48):19159–19171. https://doi.org/10.1039/c9nj04584h
Gu J, Guo R, Miao Y, Liu Y, Wu G, Duan C, Pan W (2021) Construction of full spectrum-driven CsxWO3/g-C3N4 heterojunction catalyst for efficient photocatalytic CO2 reduction. Appl Surf Sci 540(2020):148316. https://doi.org/10.1016/j.apsusc.2020.148316
Guo H, Wan S, Wang Y, Ma W, Zhong Q, Ding J (2021) Enhanced photocatalytic CO2 reduction over direct Z-scheme NiTiO3/g-C3N4 nanocomposite promoted by efficient interfacial charge transfer. Chem Eng J 412(2020):128646. https://doi.org/10.1016/j.cej.2021.128646
Guo H, Chen M, Zhong Q, Wang Y, Ma W, Ding J (2019). Synthesis of Z-scheme α-Fe2O3/g-C3N4 composite with enhanced visible-light photocatalytic reduction of CO2 to CH3OH. J CO2 Utiliz, 33: 233–241. https://doi.org/10.1016/j.jcou.2019.05.016
Han C, Li J, Ma Z, Xie H, Waterhouse GIN, Ye L, Zhang T (2018) Black phosphorus quantum dot/g-C3N4 composites for enhanced CO2 photoreduction to CO. Sci China Mater 61(9):1159–1166. https://doi.org/10.1007/s40843-018-9245-y
Hao J, Qi B, Wei J, Li D, Zeng F (2021) A Z-scheme Cu2O/WO3 heterojunction for production of renewable hydrocarbon fuel from carbon dioxide. Fuel 287(2020):119439. https://doi.org/10.1016/j.fuel.2020.119439
He Y, Zhang L, Fan M, Wang X, Walbridge ML, Nong Q et al (2015a) Z-scheme SnO2-x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction. Solar Energy Mater Solar Cells 137:175–184. https://doi.org/10.1016/j.solmat.2015.01.037
Hong L,, Guo R, Yuan Y, Ji X, Lin Z, Yin X, Pan W (2022) 2D Ti3C2 decorated Z-scheme BiOIO3/g-C3N4 heterojunction for the enhanced photocatalytic CO2 reduction activity under visible light. Colloids Surf, A 639(January):128358. https://doi.org/10.1016/j.colsurfa.2022.128358
Hou J, Yang M, Dou Q, Chen Q, Wang X, Hu C, Paul R (2022) Defect engineering in polymeric carbon nitride with accordion structure for efficient photocatalytic CO2 reduction and H2 production. Chem Eng J 450:138425. https://doi.org/10.1016/J.CEJ.2022.138425
Hou J, Zhang T, Jiang T, Wu X, Zhang Y, Tahir M et al (2021) Fast preparation of oxygen vacancy-rich 2D/2D bismuth oxyhalides-reduced graphene oxide composite with improved visible-light photocatalytic properties by solvent-free grinding. J Clean Prod 328:129651. https://doi.org/10.1016/J.JCLEPRO.2021.129651
Hu T, Dai K, Zhang J, Zhu G, Liang C (2019) One-pot synthesis of step-scheme Bi2S3/porous g-C3N4 heterostructure for enhanced photocatalytic performance. Mater Lett 257:126740. https://doi.org/10.1016/J.MATLET.2019.126740
Huang X, Gu W, Hu S, Hu Y, Zhou L, Lei J, Zhang J (2020) Phosphorus-doped inverse opal g-C 3 N 4 for efficient and selective CO generation from photocatalytic reduction of CO 2. Catal Sci Technol 10(11):3694–3700. https://doi.org/10.1039/D0CY00457J
Huang Q, Yang J, Qi F, Zhang W, Zhang N, Liang Z (2022) Visible light driven photocatalytic reduction of CO2 on Au-Pt/Cu2O/ReS2 with high efficiency and controllable selectivity. Chem Eng J 437(P1):135299. https://doi.org/10.1016/j.cej.2022.135299
Huo Y, Zhang J, Dai K, Liang C (2021a) Amine-modified S-scheme porous g-C 3 N 4 /CdSe–diethylenetriamine composite with enhanced photocatalytic CO 2 reduction activity. ACS Appl Energy Mater 4(1):956–968. https://doi.org/10.1021/acsaem.0c02896
Huo Y, Zhang J, Dai K, Liang C (2021b) Amine-modified S-scheme porous g-C3N4/CdSe-diethylenetriamine composite with enhanced photocatalytic CO2Reduction activity. ACS Appl Energy Mater 4(1):956–968. https://doi.org/10.1021/acsaem.0c02896
Huo Y, Zhang J, Wang Z, Dai K, Pan C, Liang C (2021c) Efficient interfacial charge transfer of 2D/2D porous carbon nitride/bismuth oxychloride step-scheme heterojunction for boosted solar-driven CO2 reduction. J Colloid Interface Sci 585:684–693. https://doi.org/10.1016/j.jcis.2020.10.048
Hussain A, Hou J, Tahir M, Ali S S, Rehman Z U, Bilal M, et al. (2022). Recent advances in BiOX-based photocatalysts to enhanced efficiency for energy and environment applications. https://doi.org/10.1080/01614940.2022.2041836. https://doi.org/10.1080/01614940.2022.2041836
IEA (2021). Global Energy Review 2021 – Analysis - IEA. International Energy Agency. Retrieved from https://www.iea.org/reports/global-energy-review-2021
Ibarra-Rodriguez LI, Garay-Rodríguez LF, Torres-Martínez LM (2022). Photocatalytic reduction of CO2 over LaMO3 (M: Fe, Co, Mn) /CuxO films. Mater Sci Semiconduct Process, 139(2021). https://doi.org/10.1016/j.mssp.2021.106328
Irshad M, Ain Q, tul, Zaman M, Aslam M Z, Kousar N, Asim M, … Imran M, (2022) Photocatalysis and perovskite oxide-based materials: a remedy for a clean and sustainable future. RSC Adv 12(12):7009–7039. https://doi.org/10.1039/D1RA08185C
Ismael M (2020) A review on graphitic carbon nitride (g-C3N4) based nanocomposites: synthesis, categories, and their application in photocatalysis. J Alloy Compd 846:156446. https://doi.org/10.1016/j.jallcom.2020.156446
Jadoun S, Yáñez J, Mansilla HD, Riaz U, Chauhan NPS (2022) Conducting polymers/zinc oxide-based photocatalysts for environmental remediation: a review. Environ Chem Lett 20(3):2063–2083. https://doi.org/10.1007/S10311-022-01398-W
Jawaid M, Ahmad A, Ismail N, Rafatullah M (n.d.) Environmental remediation through carbon based nano composites
Jia P, Guo R, Pan W, Huang C, Tang J, Liu X, et al. (2019a) The MoS 2 /TiO 2 heterojunction composites with enhanced activity for CO 2 photocatalytic reduction under visible light irradiation. Colloids Surf, A 570:306–316. https://doi.org/10.1016/j.colsurfa.2019.03.045
Jia X, Han Q, Zheng M, Bi H (2019b) One pot milling route to fabricate step-scheme AgI/I-BiOAc photocatalyst: energy band structure optimized by the formation of solid solution. Appl Surf Sci 489:409–419. https://doi.org/10.1016/j.apsusc.2019.05.361
Jia Q, Iwase A, Kudo A (2014) BiVO4-Ru/SrTiO3: Rh composite Z-scheme photocatalyst for solar water splitting. Chem Sci 5(4):1513–1519. https://doi.org/10.1039/c3sc52810c
Jiang X, Huang J, Bi Z, Ni W, Gurzadyan G, Zhu Y, Zhang Z (2022b) Plasmonic active “hot spots”-confined photocatalytic co2 reduction with high selectivity for CH4 production. Adv Mater. https://doi.org/10.1002/adma.202109330
Jiang J, Zou X, Mei Z, Cai S, An Q, Fu Y et al (2022a) Understanding rich oxygen vacant hollow CeO2@MoSe2 heterojunction for accelerating photocatalytic CO2 reduction. J Colloid Interface Sci 611:644–653. https://doi.org/10.1016/j.jcis.2021.12.108
Jin J, Yu J, Guo D, Cui C, Ho W (2015) A hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity. Small 11(39):5262–5271. https://doi.org/10.1002/smll.201500926
Jo WK, Kumar S, Eslava S, Tonda S (2018) Construction of Bi2WO6/RGO/g-C3N4 2D/2D/2D hybrid Z-scheme heterojunctions with large interfacial contact area for efficient charge separation and high-performance photoreduction of CO2 and H2O into solar fuels. Appl Catal B 239:586–598. https://doi.org/10.1016/j.apcatb.2018.08.056
Kandy MM (2020a) Carbon-based photocatalysts for enhanced photocatalytic reduction of CO 2 to solar fuels. Sustai Energy Fuels 4(2):469–484. https://doi.org/10.1039/C9SE00827F
Kandy MM (2020b) Carbon-based photocatalysts for enhanced photocatalytic reduction of CO2 to solar fuels. Sustain Energy Fuels 4(2):469–484. https://doi.org/10.1039/C9SE00827F
Karunakaran C, Senthilvelan S (2005) Photocatalysis with ZrO2: oxidation of aniline. J Mol Catal A Chem 233(1–2):1–8. https://doi.org/10.1016/j.molcata.2005.01.038
Kavil YN, Shaban YA, al Farawati RK, Orif MI, Zobidi M, Khan SUM, (2017) Photocatalytic conversion of CO2 into methanol over Cu-C/TiO2 nanoparticles under UV light and natural sunlight. J Photochem Photobiol, A 347:244–253. https://doi.org/10.1016/j.jphotochem.2017.07.046
Ke X, Zhang J, Dai K, Fan K, Liang C (2021) Integrated S-scheme heterojunction of amine-functionalized 1D CdSe nanorods anchoring on ultrathin 2D SnNb2O6 nanosheets for robust solar-driven CO2 conversion. Solar RRL 5(4):1–11. https://doi.org/10.1002/solr.202000805
Khalid NR, Ahmed E, Niaz NA, Nabi G, Ahmad M, Tahir MB et al (2017a) Highly visible light responsive metal loaded N/TiO 2 nanoparticles for photocatalytic conversion of CO 2 into methane. Ceram Int 43(9):6771–6777. https://doi.org/10.1016/j.ceramint.2017.02.093
Khalid NR, Ahmed E, Niaz NA, Nabi G, Ahmad M, Tahir MB, Khan Y (2017b) Highly visible light responsive metal loaded N/TiO2 nanoparticles for photocatalytic conversion of CO2 into methane. Ceram Int 43(9):6771–6777. https://doi.org/10.1016/j.ceramint.2017.02.093
Khan U, Jan FA, Ullah R, Wajidullah UN, Salman (2022b) Comparative photocatalytic performance and therapeutic applications of zinc oxide (ZnO) and neodymium-doped zinc oxide (Nd–ZnO) nanocatalysts against Acid Yellow-3 dye: kinetic and thermodynamic study of the reaction and effect of various parameters. J Mater Sci: Mater Electron. https://doi.org/10.1007/s10854-021-07483-0
Khan I, Luo M, Guo L, Khan S, Shah SA, Khan I (2022a) Synthesis of phosphate-bridged g-C3N4/LaFeO3 nanosheets Z-scheme nanocomposites as efficient visible photocatalysts for CO2 reduction and malachite green degradation. Appl Catal A General 629(2021):118418. https://doi.org/10.1016/j.apcata.2021.118418
Khdary NH, Alayyar AS, Alsarhan LM, Alshihri S, Mokhtar M (2022) Metal oxides as catalyst/supporter for CO2 capture and conversion. Catalysts 12(3):300. https://doi.org/10.3390/CATAL12030300
Kim H R, Razzaq A, Grimes C A, & In S il (2017). Heterojunction p-n-p Cu2O/S-TiO2/CuO: synthesis and application to photocatalytic conversion of CO2 to methane. J CO2 Utiliz, 20(May): 91–96. https://doi.org/10.1016/j.jcou.2017.05.008
Kong D, Tan JZY, Yang F, Zeng J, Zhang X (2013) Electrodeposited Ag nanoparticles on TiO2 nanorods for enhanced UV visible light photoreduction CO2 to CH4. Appl Surf Sci 277:105–110. https://doi.org/10.1016/j.apsusc.2013.04.010
Kovačič Ž, Likozar B, Huš M (2020) Photocatalytic CO2Reduction: a review of ab initio mechanism, kinetics, and multiscale modeling simulations. ACS Catal. https://doi.org/10.1021/ACSCATAL.0C02557/ASSET/IMAGES/LARGE/CS0C02557_0007.JPEG
Krishnan C, Creutz C, Mahajan D, Schwarz HA, Sutin N (1982) Homogeneous catalysis of the photoreduction of water by visible light 3. Mediation by polypyridine complexes of ruthenium(II) and cobalt(II). Israel J Chem 22(2):98–106. https://doi.org/10.1002/ijch.198200020
Kuehnel MF, Orchard KL, Dalle KE, Reisner E (2017) Selective photocatalytic CO 2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. J Am Chem Soc 139(21):7217–7223. https://doi.org/10.1021/jacs.7b00369
Kumar A, Thakur PR, Sharma G, Vo DVN, Naushad M, Tatarchuk T et al (2022) Accelerated charge transfer in well-designed S-scheme Fe@TiO2/Boron carbon nitride heterostructures for high performance tetracycline removal and selective photo-reduction of CO2 greenhouse gas into CH4 fuel. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.132301
Kumar S, Yadav N, Kumar P, Ganguli AK (2018) Design and comparative studies of Z-scheme and type II based heterostructures of NaNbO 3 /CuInS 2 /In 2 S 3 for efficient photoelectrochemical applications. Inorg Chem 57(24):15112–15122. https://doi.org/10.1021/acs.inorgchem.8b02264
Kuriyama A, Abe N (2018) Ex-post assessment of the Kyoto Protocol – quantification of CO2 mitigation impact in both Annex B and non-Annex B countries-. Appl Energy 220:286–295. https://doi.org/10.1016/j.apenergy.2018.03.025
Lais A, Gondal MA, Dastageer MA, Al-Adel FF (2018) Experimental parameters affecting the photocatalytic reduction performance of CO2 to methanol: a review. Int J Energy Res 42(6):2031–2049. https://doi.org/10.1002/ER.3965
Lam S-MM, Sin J-CC, Abdullah AZ, Mohamed AR (2012) Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: a review. Desalin Water Treat 41(1–3):131–169. https://doi.org/10.1080/19443994.2012.664698
Lei W, Huang G, Zhang L, Lian R, Huang J, She H (2022) Construction of TiO2-covalent organic framework Z-scheme hybrid through coordination bond for photocatalytic CO2 conversion. J Energy Chem 64:85–92. https://doi.org/10.1016/j.jechem.2021.04.053
Li N, Chen X, Wang J, Liang X, Ma L, Jing X et al (2022c) ZnSe nanorods-CsSnCl3 perovskite heterojunction composite for photocatalytic CO2 reduction. ACS Nano. https://doi.org/10.1021/acsnano.1c11442
Li S, Hasan N, Ma H, Zhu G, Pan L, Zhang F (2022d) Hierarchical V2O5/ZnV2O6 nanosheets photocatalyst for CO2 reduction to solar fuels. Chem Eng J 430(P2):132863. https://doi.org/10.1016/j.cej.2021.132863
Li D, Hussain S, Wang Y, Huang C, Li P, Wang M, He T (2021a) ZnSe/CdSe Z-scheme composites with Se vacancy for efficient photocatalytic CO2 reduction. Appl Catal B 286(January):119887. https://doi.org/10.1016/j.apcatb.2021.119887
Li X, Jiang H, Ma C, Zhu Z, Song X, Wang H et al (2021b) Local surface plasma resonance effect enhanced Z-scheme ZnO/Au/g-C3N4 film photocatalyst for reduction of CO2 to CO. Appl Catal B Environ 283(2020):119638. https://doi.org/10.1016/j.apcatb.2020.119638
Li L, Ma D, Xu Q, Huang S (2022b) Constructing hierarchical ZnIn2S4/g-C3N4 S-scheme heterojunction for boosted CO2 photoreduction performance. Chem Eng J 437(P2):135153. https://doi.org/10.1016/j.cej.2022.135153
Li J, Shao W, Geng M, Wan S, Ou M, Chen Y (2022a) Combined Schottky junction and doping effect in CdxZn1-xS@Au/BiVO4 Z-Scheme photocatalyst with boosted carriers charge separation for CO2 reduction by H2O. J Colloid Interface Sci 606:1469–1476. https://doi.org/10.1016/j.jcis.2021.08.103
Li H, Zhang N, Zhao F, Liu T, Wang Y (2020) Facile fabrication of a novel Au/phosphorus-doped g-C3N4 photocatalyst with excellent visible light photocatalytic activity. Catalysts 10(6):701. https://doi.org/10.3390/catal10060701
Libo W, Cheng B, Zhang L, Yu J (2021) In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small 17(41):1–9. https://doi.org/10.1002/smll.202103447
Libo W, Fei X, Zhang L, Yu J, Cheng B, Ma Y (2022) Solar fuel generation over nature-inspired recyclable TiO2/g-C3N4 S-scheme hierarchical thin-film photocatalyst. J Mater Sci Technol 112:1–10. https://doi.org/10.1016/j.jmst.2021.10.016
Lin J, Tian W, Zhang H, Duan X, Sun H, Wang S (2021) Graphitic carbon nitride-based Z-scheme structure for photocatalytic CO2reduction. Energy Fuels 35(1):7–24. https://doi.org/10.1021/acs.energyfuels.0c03048
Lingampalli SR, Ayyub MM, Rao CNR (2017) Recent progress in the photocatalytic reduction of carbon dioxide. ACS Omega 2(6):2740–2748. https://doi.org/10.1021/acsomega.7b00721
Linxi W, Sun J, Cheng B, He R, Yu J (2023) S-scheme heterojunction photocatalysts for H2O2 production. J Phys Chem Lett 14(20):4803–4814. https://doi.org/10.1021/ACS.JPCLETT.3C00811/ASSET/IMAGES/LARGE/JZ3C00811_0005.JPEG
Liu ZL, Liu RR, Mu YF, Feng YX, Dong GX, Zhang M, Lu TB (2021) In situ construction of lead-free perovskite direct Z-scheme heterojunction Cs3Bi2I9/Bi2WO6 for efficient photocatalysis of CO2 reduction. Solar RRL 5(3):1–9. https://doi.org/10.1002/solr.202000691
Looney B (2021). Statistical review of the World 2021. London.
Low J, Cheng B, Yu J (2017) Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl Surf Sci 392:658–686. https://doi.org/10.1016/j.apsusc.2016.09.093
Low J, Dai B, Tong T, Jiang C, & Yu J (2019a). In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO 2 /CdS composite film photocatalyst. Adv Mater. John Wiley & Sons, Ltd. https://doi.org/10.1002/adma.201807920
Low J, Dai B, Tong T, Jiang C, & Yu J (2019b). Correction to: In Situ Irradiated X-Ray Photoelectron Spectroscopy Investigation on a Direct Z-Scheme TiO 2 /CdS Composite Film Photocatalyst (Advanced Materials, (1802981), https://doi.org/10.1002/adma.201802981). Advanced Materials. Wiley https://doi.org/10.1002/adma.201807920
Lu J, Gu S, Li H, Wang Y, Guo M, Zhou G (2023) Review on multi-dimensional assembled S-scheme heterojunction photocatalysts. J Mater Sci Technol 160:214–239. https://doi.org/10.1016/J.JMST.2023.03.027
Lu Y, Liu M, Zheng N, He X, Hu R, Wang R, Hu Z (2022) Promoting the protonation step on the interface of titanium dioxide for selective photocatalytic reduction of CO2 to CH4 by using red phosphorus quantum dots. Nano Res 15(4):3042–3049. https://doi.org/10.1007/s12274-021-3943-5
Lu L, Xin Z, Wang X, Wang S, Zhu H, Li T et al (2019) KOH-modified Ni/LaTiO2N Schottky junction efficiently reducing CO2 to CH4 under visible light irradiation. Appl Catal B Environ 244:786–794. https://doi.org/10.1016/j.apcatb.2018.12.002
Luo J, Zhou X, Ma L, Xu L, Xu X, Du Z, Zhang J (2016) Enhancing visible light photocatalytic activity of direct Z-scheme SnS2/Ag3PO4 heterojunction photocatalysts. Mater Res Bull 81:16–26. https://doi.org/10.1016/j.materresbull.2016.04.028
Madhusudan P, Shi R, Xiang S, Jin M, Chandrashekar BN, Wang J et al (2021) Construction of highly efficient Z-scheme ZnxCd1-xS/Au@g-C3N4 ternary heterojunction composite for visible-light-driven photocatalytic reduction of CO2 to solar fuel. Appl Catal B Environ 282(2020):119600. https://doi.org/10.1016/j.apcatb.2020.119600
Maeda K (2013) Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal 3(7):1486–1503. https://doi.org/10.1021/cs4002089
Matějová L, Kočí K, Troppová I, Šihor M, Edelmannová M, Lang J et al (2018) TiO 2 and nitrogen doped TiO 2 prepared by different methods; on the (Micro)structure and photocatalytic activity in CO 2 reduction and N 2 O decomposition. J Nanosci Nanotechnol 18(1):688–698. https://doi.org/10.1166/jnn.2018.13936
Mekasuwandumrong O, Jantarasorn N, Panpranot J, Ratova M, Kelly P, Praserthdam P (2019) Synthesis of Cu/TiO2 catalysts by reactive magnetron sputtering deposition and its application for photocatalytic reduction of CO2 and H2O to CH4. Ceram Int 45(17):22961–22971. https://doi.org/10.1016/j.ceramint.2019.07.340
Meng A, Cheng B, Tan H, Fan J, Su C, Yu J (2021) TiO2/polydopamine S-scheme heterojunction photocatalyst with enhanced CO2-reduction selectivity. Appl Catal B Environ 289(February):120039. https://doi.org/10.1016/j.apcatb.2021.120039
Miao Z, Wang Q, Zhang Y, Meng L, Wang X (2022) In situ construction of S-scheme AgBr/BiOBr heterojunction with surface oxygen vacancy for boosting photocatalytic CO2 reduction with H2O. Appl Catal B 301(2021):120802. https://doi.org/10.1016/j.apcatb.2021.120802
Miseki Y, Fujiyoshi S, Gunji T, Sayama K (2013) Photocatalytic water splitting under visible light utilizing I 3-/I- and IO3-/I - redox mediators by Z-scheme system using surface treated PtO x/WO3 as O2 evolution photocatalyst. Catal Sci Technol 3(7):1750–1756. https://doi.org/10.1039/c3cy00055a
Mohamed RM, Ismail AA (2020) Triblock copolymer-assisted synthesis of Z-scheme porous g-C3N4 based photocatalysts with promoted visible-light-driven performance. Ceram Int 46(18):28903–28913. https://doi.org/10.1016/j.ceramint.2020.08.058
Mu Z, Chen S, Wang Y, Zhang Z, Li Z, Xin B, Jing L (2021) Controlled construction of copper phthalocyanine/α-Fe 2 O 3 ultrathin S-scheme heterojunctions for efficient photocatalytic CO 2 reduction under wide visible-light irradiation. Small Sci 1(10):2100050. https://doi.org/10.1002/smsc.202100050
Mu J, Teng F, Miao H, Wang Y, Hu X (2020) In-situ oxidation fabrication of 0D/2D SnO2/SnS2 novel Step-scheme heterojunctions with enhanced photoelectrochemical activity for water splitting. Appl Surf Sci 501:143974. https://doi.org/10.1016/J.APSUSC.2019.143974
Muringa Kandy M, Rajeev KA, Sankaralingam M (2021) Development of proficient photocatalytic systems for enhanced photocatalytic reduction of carbon dioxide. Sustai Energy Fuels 5(1):12–33. https://doi.org/10.1039/D0SE01282C
Murugesan P, Narayanan S, Manickam M, Murugesan PK, Subbiah R (2018) A direct Z-scheme plasmonic AgCl@g-C 3 N 4 heterojunction photocatalyst with superior visible light CO 2 reduction in aqueous medium. Appl Surf Sci 450:516–526. https://doi.org/10.1016/j.apsusc.2018.04.111
Najam T, Ahmad Khan N, Ahmad Shah SS, Ahmad K, Sufyan Javed M, Suleman S et al (2022) Metal-organic frameworks derived electrocatalysts for oxygen and carbon dioxide reduction reaction. Chem Record 22(7):e202100329. https://doi.org/10.1002/TCR.202100329
Nguyen VH, Nguyen BS, Huang CW, Le TT, Nguyen CC, Le Nhi TT et al (2020) Photocatalytic NOx abatement: Recent advances and emerging trends in the development of photocatalysts. J Clean Prod 270:121912. https://doi.org/10.1016/j.jclepro.2020.121912
Nick S, Borgarello E, Grätzel M (1984) Visible light induced generation of hydrogen from H2S in mixed semiconductor dispersions; improved efficiency through inter-particle electron transfer. J Chem Soc, Chem Commun 6:342–344. https://doi.org/10.1039/C39840000342
Nishimura A, Ishida N, Tatematsu D, Hirota M, Koshio A, Kokai F, Hu E (2017) Effect of Fe loading condition and reductants on CO 2 reduction performance with Fe/TiO 2 photocatalyst. Int J Photoenergy 2017:1–11. https://doi.org/10.1155/2017/1625274
Olowoyo JO, Kumar M, Jain SL, Shen S, Zhou Z, Mao SS et al (2018a) Reinforced photocatalytic reduction of CO2 to fuel by efficient S-TiO2: significance of sulfur doping. Int J Hydrogen Energy 43(37):17682–17695. https://doi.org/10.1016/j.ijhydene.2018.07.193
Olowoyo JO, Kumar M, Jain SL, Shen S, Zhou Z, Mao SS, Kumar U (2018b) Reinforced photocatalytic reduction of CO2 to fuel by efficient S-TiO2: significance of sulfur doping. Int J Hydrogen Energy 43(37):17682–17695. https://doi.org/10.1016/j.ijhydene.2018.07.193
Özer B, Görgün E, & Incecik S, (2013) The scenario analysis on CO2 emission mitigation potential in the Turkish electricity sector: 2006–2030. Energy 49(1):395–403. https://doi.org/10.1016/j.energy.2012.10.059
D P (1992) CRC Handbook of Chemistry and Physics. J Mol Struct 268(1–3):320. https://doi.org/10.1016/0022-2860(92)85083-s
Pan B, Wu Y, Rhimi B, Qin J, Huang Y, Yuan M, Wang C (2021) Oxygen-doping of ZnIn2S4 nanosheets towards boosted photocatalytic CO2 reduction. J Energy Chem 57:1–9. https://doi.org/10.1016/j.jechem.2020.08.024
Pawar AU, Kim CW, Nguyen-Le MT, Kang YS (2019) General review on the components and parameters of photoelectrochemical system for CO 2 reduction with in situ analysis. ACS Sustain Chem Eng 7(8):7431–7455. https://doi.org/10.1021/ACSSUSCHEMENG.8B06303/ASSET/IMAGES/LARGE/SC-2018-063034_0004.JPEG
Pei L, Li T, Yuan Y, Yang T, Zhong J, Ji Z et al (2019a) Schottky junction effect enhanced plasmonic photocatalysis by TaON@Ni NP heterostructures. Chem Commun 55(78):11754–11757. https://doi.org/10.1039/C9CC05485E
Pramanik SK, Suja FB, Zain S, Pramanik BK (2019) Spherical shell CdS@NiO Z-scheme composites for solar-driven overall ware splitting and carbin dioxide reduction. Bioresource Technol Rep. https://doi.org/10.1016/j.mtener.2022.101044
Puri N, Gupta A (2023) Water remediation using titanium and zinc oxide nanomaterials through disinfection and photo catalysis process: a review. Environ Res 227:115786. https://doi.org/10.1016/J.ENVRES.2023.115786
Qi K, Cheng B, Yu J, Ho W (2017) A review on TiO2-based Z-scheme photocatalysts. Cuihua Xuebao/chin J Catal. https://doi.org/10.1016/S1872-2067(17)62962-0
Qian X, Yang W, Gao S, Xiao J, Basu S, Yoshimura A et al (2020) Highly selective, defect-induced photocatalytic CO2 reduction to acetaldehyde by the Nb-doped TiO2 nanotube array under simulated solar illumination. ACS Appl Mater Interfaces 12(50):55982–55993. https://doi.org/10.1021/acsami.0c17174
Qian R, Zong H, Schneider J, Zhou G, Zhao T, Li Y et al (2019) Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: an overview. Catal Today 335:78–90. https://doi.org/10.1016/j.cattod.2018.10.053
Quan Y, Wang B, Liu G, Li H, Xia J (2021) Carbonized polymer dots modified ultrathin Bi12O17Cl2 nanosheets Z-scheme heterojunction for robust CO2 photoreduction. Chem Eng Sci 232:116338. https://doi.org/10.1016/j.ces.2020.116338
Que M, Cai W, Chen J, Zhu L, Yang Y (2021) Recent advances in g-C3N4composites within four types of heterojunctions for photocatalytic CO2reduction. Nanoscale 13(14):6692–6712. https://doi.org/10.1039/d0nr09177d
Radić N, Grbić B, Stojadinović S, Ilić M, Došen O, Stefanov P (2022) TiO2–CeO2 composite coatings for photocatalytic degradation of chloropesticide and organic dye. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-022-07698-9
Ran J, Jaroniec M, Qiao SZ (2018) Cocatalysts in semiconductor-based photocatalytic CO2 reduction: achievements, challenges, and opportunities. Adv Mater. https://doi.org/10.1002/adma.201704649
Rehman ZU, Bilal M, Hou J, Butt FK, Ahmad J, Ali S, Hussain A (2022) Photocatalytic CO2 reduction using TiO2-based photocatalysts and TiO2 Z-scheme heterojunction composites: a review. Molecules 27(7):2069. https://doi.org/10.3390/MOLECULES27072069
Ren D, Zhang W, Ding Y, Shen R, Jiang Z, Lu X, Li X (2020) In situ fabrication of robust cocatalyst-free CdS/g-C3N4 2D–2D step-scheme heterojunctions for highly active H2 evolution. Solar RRL 4(8):1900423. https://doi.org/10.1002/solr.201900423
Reñones P, Fresno F, Oropeza FE, Gorni G, de la Peña OVA (2022b) Structural and electronic insight into the effect of indium doping on the photocatalytic performance of TiO 2 for CO 2 conversion. J Mater Chem A 10(11):6054–6064. https://doi.org/10.1039/d1ta08347c
Reñones P, Fresno F, Oropeza FE, de la Peña OVA (2022a) Improved methane production by photocatalytic CO2 conversion over Ag/In2O3/TiO2 heterojunctions. Materials 15(3):843. https://doi.org/10.3390/ma15030843
Sabbah A, Shown I, Qorbani M, Fu FY, Lin TY, Wu HL et al (2022) Boosting photocatalytic CO2 reduction in a ZnS/ZnIn2S4 heterostructure through strain-induced direct Z-scheme and a mechanistic study of molecular CO2 interaction thereon. Nano Energy 93(2021):106809. https://doi.org/10.1016/j.nanoen.2021.106809
Sahara G, Ishitani O (2015) Efficient photocatalysts for CO2 reduction. Inorg Chem 54(11):5096–5104. https://doi.org/10.1021/ic502675a
Samadi M, Zirak M, Naseri A, Khorashadizade E, Moshfegh AZ (2016) Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 605:2–19. https://doi.org/10.1016/j.tsf.2015.12.064
Sang Y, Liu H, Umar A (2015) Photocatalysis from UV/Vis to near-infrared light: towards full solar-light spectrum activity. ChemCatChem 7(4):559–573. https://doi.org/10.1002/cctc.201402812
Sasaki Y, Kato H, Kudo A (2013) [Co(bpy)3)]3+/2+ and [Co(phen)3] 3+/2+ electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system. J Am Chem Soc 135(14):5441–5449. https://doi.org/10.1021/JA400238R/SUPPL_FILE/JA400238R_SI_001.PDF
Sasaki Y, Nemoto H, Saito K, Kudo A (2009) Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. J Phys Chem C 113(40):17536–17542. https://doi.org/10.1021/jp907128k
Serpone N, Maruthamuthu P, Pichat P, Pelizzetti E, Hidaka H (1995) Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. J Photochem Photobiol, A 85(3):247–255. https://doi.org/10.1016/1010-6030(94)03906-B
Shyamal S, Dutta SK, Pradhan N (2019) Doping iron in CsPbBr 3 perovskite nanocrystals for efficient and product selective CO2 reduction. J Phys Chem Lett 10(24):7965–7969. https://doi.org/10.1021/acs.jpclett.9b03176
Sim LC, Leong KH, Saravanan P, Ibrahim S (2015) Rapid thermal reduced graphene oxide/Pt–TiO2 nanotube arrays for enhanced visible-light-driven photocatalytic reduction of CO2. Appl Surf Sci 358:122–129. https://doi.org/10.1016/j.apsusc.2015.08.065
Singh S, Punia R, Pant KK, Biswas P (2022) Effect of work-function and morphology of heterostructure components on CO2 reduction photo-catalytic activity of MoS2-Cu2O heterostructure. Chem Eng J. https://doi.org/10.1016/j.cej.2021.132709
Song J, Lu Y, Lin Y, Liu Q, Wang X, Su W (2021) A direct Z-scheme α-Fe2O3/LaTiO2N visible-light photocatalyst for enhanced CO2 reduction activity. Appl Catal B 292(March):120185. https://doi.org/10.1016/j.apcatb.2021.120185
Suh HH, Bahadori T, Vallarino J, Spengler JD (2000) Criteria air pollutants and toxic air-pollutants. Environ Health Perspect 108(SUPPL. 4):625–633. https://doi.org/10.1289/ehp.00108s4625
Sun Z, Fang W, Zhao L, Wang H (2020) 3D porous Cu-NPs/g-C3N4 foam with excellent CO2 adsorption and Schottky junction effect for photocatalytic CO2 reduction. Appl Surf Sci 504:144347. https://doi.org/10.1016/j.apsusc.2019.144347
Tabata M, Maeda K, Higashi M, Lu D, Takata T, Abe R, Domen K (2010) Modified Ta3N5 powder as a photocatalyst for O 2 evolution in a two-step water splitting system with an iodate/iodide shuttle redox mediator under visible light. Langmuir 26(12):9161–9165. https://doi.org/10.1021/la100722w
Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K (2006) All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nat Mater 5(10):782–786. https://doi.org/10.1038/nmat1734
Tahir M, Amin NAS (2015a) Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4. Appl Catal B 162:98–109. https://doi.org/10.1016/j.apcatb.2014.06.037
Tahir M, Amin NS (2015b) Photocatalytic CO2 reduction with H2 as reductant over copper and indium co-doped TiO2 nanocatalysts in a monolith photoreactor. Appl Catal A 493:90–102. https://doi.org/10.1016/j.apcata.2014.12.053
Tahir B, Tahir M, Amin NS (2015a) Gold-indium modified TiO 2 nanocatalysts for photocatalytic CO 2 reduction with H 2 as reductant in a monolith photoreactor. Appl Surf Sci 338:1–14. https://doi.org/10.1016/j.apsusc.2015.02.126
Tahir M, Tahir B, Amin NAS (2015b) Gold-nanoparticle-modified TiO 2 nanowires for plasmon-enhanced photocatalytic CO 2 reduction with H 2 under visible light irradiation. Appl Surf Sci 356:1289–1299. https://doi.org/10.1016/j.apsusc.2015.08.231
Tang J, Guo R, Zhou W, Huang C, Pan W (2018) Ball-flower like NiO/g-C3N4 heterojunction for efficient visible light photocatalytic CO2 reduction. Appl Catal B Environ 237:802–810. https://doi.org/10.1016/j.apcatb.2018.06.042
Tayade RJ, Kulkarni RG, Jasra Raksh V (2006) Transition metal ion impregnated mesoporous TiO 2 for photocatalytic degradation of organic contaminants in water. Ind Eng Chem Res 45(15):5231–5238. https://doi.org/10.1021/ie051362o
Teets TS, Nocera DG (2011) Photocatalytic hydrogen production. Chem Commun 47(33):9268–9274. https://doi.org/10.1039/c1cc12390d
Teranishi T, Sakamoto M (2013) Charge separation in type-II semiconductor heterodimers. J Phys Chem Lett 4(17):2867–2873. https://doi.org/10.1021/jz4013504
Thanh TMH, Dieu Cam NT, van Thuan D, van Quan P, van Hoang C, Thu Phuong TT et al (2020) Novel direct Z-scheme AgI/N–TiO2 photocatalyst for removal of polluted tetracycline under visible irradiation. Ceram Int 46(5):6012–6021. https://doi.org/10.1016/j.ceramint.2019.11.058
Thomas S, Harshita BSP, Mishra P, Talegaonkar S (2015) Ceramic nanoparticles: fabrication methods and applications in drug delivery. Curr Pharm Des 21(42):6165–6188. https://doi.org/10.2174/1381612821666151027153246
Tonda S, Kumar S, Bhardwaj M, Yadav P, Ogale S (2018) G-C3N4/NiAl-LDH 2D/2D hybrid heterojunction for high-performance photocatalytic reduction of CO2 into renewable fuels. ACS Appl Mater Interfaces 10(3):2667–2678. https://doi.org/10.1021/acsami.7b18835
Wan J, Du X, Liu E, Hu Y, Fan J, Hu X (2017) Z-scheme visible-light-driven Ag3PO4 nanoparticle@MoS2 quantum dot/few-layered MoS2 nanosheet heterostructures with high efficiency and stability for photocatalytic selective oxidation. J Catal 345:281–294. https://doi.org/10.1016/J.JCAT.2016.11.013
Wang W, Feng X, Chen L, Zhang F (2021b) Z-scheme Cu 2 O/Bi/BiVO 4 nanocomposite photocatalysts: synthesis, characterization, and application for CO 2 photoreduction. Ind Eng Chem Res 60(50):18384–18396. https://doi.org/10.1021/acs.iecr.1c03581
Wang Y, Huang H, Zhang Z, Wang C, Yang Y, Li Q, Xu D (2021c) Lead-free perovskite Cs2AgBiBr 6@g-C3N4 Z-scheme system for improving CH4 production in photocatalytic CO2 reduction. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2020.119570
Wang Z, Lin Z, Shen S, Zhong W, Cao S (2021) Advances in designing heterojunction photocatalytic materials. Chin J Catal 42(5):710–730. https://doi.org/10.1016/S1872-2067(20)63698-1
Wang W, Liu Y, Huang B, Dai Y, Lou Z, Wang G et al (2014) Progress on extending the light absorption spectra of photocatalysts. Phys Chem Chem Phys 16(7):2758. https://doi.org/10.1039/c3cp53817f
Wang A, Wu S, Dong J, Wang R, Wang J, Zhang J et al (2021a) Interfacial facet engineering on the Schottky barrier between plasmonic Au and TiO2 in boosting the photocatalytic CO2 reduction under ultraviolet and visible light irradiation. Chem Eng J 404:127145. https://doi.org/10.1016/j.cej.2020.127145
Wang P, Yang M, Youji L, Tang S, Lin X, Zhang H et al (2022b) Z-Scheme heterojunctionscomposed of 3D graphene aerogel/g-C 3N 4nanosheets/ porous ZnO nanospheres for the efficient photocatalytic reduction of CO 2 with H 2Ounder visible light irradiation. SSRN Electron J. https://doi.org/10.2139/ssrn.3977403
Wang J, Yu Y, Cui J, Li X, Zhang Y, Wang C (2022a) Defective g-C3N4/covalent organic framework van der Waals heterojunction toward highly efficient S-scheme CO2 photoreduction. Appl Catal B Environ 301(2021):120814. https://doi.org/10.1016/j.apcatb.2021.120814
Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Wang X (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43(15):5234. https://doi.org/10.1039/C4CS00126E
Wang S, Zhu B, Liu M, Zhang L, Yu J, Zhou M (2019) Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Appl Catal B 243:19–26. https://doi.org/10.1016/j.apcatb.2018.10.019
Wenderich K, Mul G (2016) Methods, mechanism, and applications of photodeposition in photocatalysis: a review. Chem Rev. https://doi.org/10.1021/acs.chemrev.6b00327
Xi C, Chen Y, Liu X, Wang Q, Li L, Du L, Tian G (2022) Boosted charge transfer and photocatalytic CO2 reduction over sulfur-doped C3N4 porous nanosheets with embedded SnS2-SnO2 nanojunctions. Sci China Mater 65(2):400–412. https://doi.org/10.1007/s40843-021-1744-5
Xianying W, Wang Y, Gao M, Shen J, Pu X, Zhang Z, Wang X (2020) BiVO4 /Bi4Ti3O12 heterojunction enabling efficient photocatalytic reduction of CO2 with H2O to CH3OH and CO. Appl Catal B Environ 270:118876. https://doi.org/10.1016/j.apcatb.2020.118876
Xiaobo C, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503–6570. https://doi.org/10.1021/cr1001645
Xiaoning W, Jiang Z, Chen H, Wang K, Wang X (2022) Photocatalytic CO2 reduction with water vapor to CO and CH4 in a recirculation reactor by Ag-Cu2O/TiO2 Z-scheme heterostructures. J Alloy Compd 896:163030. https://doi.org/10.1016/j.jallcom.2021.163030
Xie Z, Xu Y, Li D, Chen L, Meng S, Jiang D, Chen M (2021) Construction of CuO quantum Dots/WO3 nanosheets 0D/2D Z-scheme heterojunction with enhanced photocatalytic CO2 reduction activity under visible-light. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2020.157668
Xie Y, Zhuo Y, Liu S, Lin Y, Zuo D, Wu X et al (2020) Ternary g-C 3 N 4 /ZnNCN@ZIF-8 hybrid photocatalysts with robust interfacial interactions and enhanced CO 2 reduction performance. Solar RRL 4(8):1900440. https://doi.org/10.1002/solr.201900440
Xin ZK, Gao YJ, Gao Y, Song HW, Zhao J, Fan F et al (2022) Rational design of dot-on-rod nano-heterostructure for photocatalytic CO2 reduction: pivotal role of hole transfer and utilization. Adv Mater. https://doi.org/10.1002/adma.202106662
Xiong S, Bao S, Wang W, Hao J, Mao Y, Liu P et al (2022) Surface oxygen vacancy and graphene quantum dots co-modified Bi2WO6 toward highly efficient photocatalytic reduction of CO2. Appl Catal B Environ 305(2021):121026. https://doi.org/10.1016/j.apcatb.2021.121026
Xu F, Meng K, Cheng B, Wang S, Xu J, Yu J (2020a) Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr 3 hybrids for CO2 photoreduction. Nat Commun 11(1):1–9. https://doi.org/10.1038/s41467-020-18350-7
Xu M, Sun C, Zhao X, Jiang H, Wang H, Huo P (2022) Fabricated hierarchical CdS/Ni-MOF heterostructure for promoting photocatalytic reduction of CO2. Appl Surf Sci 576:151792. https://doi.org/10.1016/j.apsusc.2021.151792
Xu Q, Zhang L, Cheng B, Fan J, Yu J (2020b) S-scheme heterojunction. Photocatal Chem 6(7):1543–1559. https://doi.org/10.1016/J.CHEMPR.2020.06.010/ATTACHMENT/886C9D07-58A0-43C2-B23F-1736227A4ACC/MMC1.PDF
Xu Q, Zhang L, Yu J, Wageh S, Al-Ghamdi AA, Jaroniec M (2018) Direct Z-scheme photocatalysts: principles, synthesis, and applications. Mater Today. https://doi.org/10.1016/j.mattod.2018.04.008
Xue LM, Zhang FH, Fan HJ, Bai XF (2011) Preparation of C doped TiO2 photocatalysts and their photocatalytic reduction of carbon dioxide. Adv Mater Res 183–185:1842–1846. https://doi.org/10.4028/www.scientific.net/AMR.183-185.1842
Yan Y, Yu Y, Cao C, Huang S, Yang Y, Yang X, Cao Y (2016) Enhanced photocatalytic activity of TiO2-Cu/C with regulation and matching of energy levels by carbon and copper for photoreduction of CO2 into CH4. CrystEngComm 18(16):2956–2964. https://doi.org/10.1039/c6ce00117c
Yang Y, Zhang D, Fan J, Liao Y, Xiang Q (2021) Construction of an ultrathin S-scheme heterojunction based on few-layer g-C3N4 and monolayer Ti3C2Tx MXene for photocatalytic CO2 reduction. Solar RRL. https://doi.org/10.1002/solr.202000351
Yu W, Chen J, Shang T, Chen L, Gu L, Peng T (2017) Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production. Appl Catal B 219:693–704. https://doi.org/10.1016/j.apcatb.2017.08.018
Yu J, Wang S, Low J, Xiao W (2013) Enhanced photocatalytic performance of direct Z-scheme g-C3N4–TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys Chem Chem Phys 15(39):16883–16890. https://doi.org/10.1039/C3CP53131G
Yu B, Wu Y, Meng F, Wang Q, Jia X, Wasim Khan M et al (2022a) Formation of hierarchical Bi2MoO6/ln2S3 S-scheme heterojunction with rich oxygen vacancies for boosting photocatalytic CO2 reduction. Chem Eng J 429(2021):1–11. https://doi.org/10.1016/j.cej.2021.132456
Yu W, Xu D, Peng T (2015) Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism. J Mater Chem A 3(39):19936–19947. https://doi.org/10.1039/c5ta05503b
Yu W, Zhang S, Chen J, Xia P, Richter MH, Chen L et al (2018) Biomimetic Z-scheme photocatalyst with a tandem solid-state electron flow catalyzing H2 evolution. J Mater Chem A 6(32):15668–15674. https://doi.org/10.1039/c8ta02922a
Zhai Q, Xie S, Fan W, Zhang Q, Wang Y, Deng W, Wang Y (2013) Photocatalytic conversion of carbon dioxide with water into methane: platinum and copper(I) oxide co-catalysts with a core-shell structure. Angew Chem 125(22):5888–5891. https://doi.org/10.1002/ange.201301473
Zhang Z, Cao Y, Zhang F, Li W, Li Y, Yu H et al (2021c) Tungsten oxide quantum dots deposited onto ultrathin CdIn2S4 nanosheets for efficient S-scheme photocatalytic CO2 reduction via cascade charge transfer. Chem Eng J 428:131218. https://doi.org/10.1016/j.cej.2021.131218
Zhang J, Fu J, Dai K (2022b) Graphitic carbon nitride/antimonene van der Waals heterostructure with enhanced photocatalytic CO2 reduction activity. J Mater Sci Technol 116:192–198. https://doi.org/10.1016/j.jmst.2021.10.045
Zhang W, Huang W, Wu B, Yang J, Jin J, Zhang S (2023) Excitonic effect in MOFs-mediated photocatalysis: phenomenon, characterization techniques and regulation strategies. Coord Chem Rev 491:215235. https://doi.org/10.1016/J.CCR.2023.215235
Zhang X, Kim D, Yan J, Lee LYS (2021b) Photocatalytic co2reduction enabled by interfacial S-scheme heterojunction between ultrasmall copper phosphosulfide and g-C3N4. ACS Appl Mater Interfaces 13(8):9762–9770. https://doi.org/10.1021/acsami.0c17926
Zhang LJ, Li S, Liu BK, Wang DJ, Xie TF (2014) Highly efficient CdS/WO3 photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic H2 evolution under visible light. ACS Catal 4(10):3724–3729. https://doi.org/10.1021/cs500794j
Zhang Y, Tian Y, Chen W, Zhou M, Ou S, Liu Y (2022c) Construction of a bismuthene/CsPbBr 3 quantum Dot S-scheme heterojunction and enhanced photocatalytic CO2 reduction. J Phys Chem C 126(6):3087–3097. https://doi.org/10.1021/acs.jpcc.1c10729
Zhang G, Wang Z, He T, Wu J, Zhang J, Wu J (2022a) Rationally design and in-situ fabrication of ultrasmall pomegranate-like Cdin2s4/Znin2s4 Z-scheme heterojunction with abundant vacancies for improving Co2 reduction and water splitting. SSRN Electron J. https://doi.org/10.2139/ssrn.4032432
Zhang L, Zhang J, Yu H, Yu J (2021a) Emerging S-scheme photocatalyst. Adv Mater. https://doi.org/10.1002/adma.202107668
Zhao Z, Fan J, Wang J, Li R (2012) Effect of heating temperature on photocatalytic reduction of CO2 by N-TiO2 nanotube catalyst. Catal Commun 21:32–37. https://doi.org/10.1016/j.catcom.2012.01.022
Zheng L, Zheng Y, Chen C, Zhan Y, Lin X, Zheng Q, Zhu J (2009) Network structured SnO2/ZnO heterojunction nanocatalyst with high photocatalytic activity. Inorg Chem 48(5):1819–1825. https://doi.org/10.1021/ic802293p
Zhongliao W, Chen Y, Zhang L, Cheng B, Yu J, Fan J (2020) Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity. J Mater Sci Technol 56:143. https://doi.org/10.1016/J.JMST.2020.02.062
Zhou D, Chen Z, Yang Q, Shen C, Tang G, Zhao S, Dong X (2016) Facile Construction of g-C3N4 nanosheets/TiO2 nanotube arrays as Z-scheme photocatalyst with enhanced visible-light performance. ChemCatChem 8(19):3064–3073. https://doi.org/10.1002/cctc.201600828
Zhou Y, Jiao W, Xie Y, He F, Ling Y, Yang Q et al (2022b) Enhanced photocatalytic CO2-reduction activity to form CO and CH4 on S-scheme heterostructured ZnFe2O4/Bi2MoO6 photocatalyst. J Colloid Interface Sci 608:2213–2223. https://doi.org/10.1016/j.jcis.2021.10.053
Zhou G, Meng L, Ning X, Yin W, Hou J, Xu Q et al (2022a) Switching charge transfer of g-C3N4/BiVO4 heterojunction from type II to Z-scheme via interfacial vacancy engineering for improved photocatalysis. Int J Hydrogen Energy 47(14):8749–8760. https://doi.org/10.1016/j.ijhydene.2021.12.226
Zhou P, Yu J, Jaroniec M (2014) All-solid-state Z-scheme photocatalytic systems. Adv Mater 26(29):4920–4935. https://doi.org/10.1002/ADMA.201400288
Zhu B, Tan H, Fan J, Cheng B, Yu J, Ho W (2021) Tuning the strength of built-in electric field in 2D/2D g-C3N4/SnS2 and g-C3N4/ZrS2 S-scheme heterojunctions by nonmetal doping. J Materiomics 7(5):988–997. https://doi.org/10.1016/j.jmat.2021.02.015
Funding
This study was funded by Higher Education Commission, Pakistan, 8421/Punjab/NRPU/R&D/HEC/2017, Masood ul Hassan Farooq, 7435/Punjab/NRPU/R&D/HEC/2017, Faheem K. Butt.
Author information
Authors and Affiliations
Corresponding author
Additional information
Editorial responsibility: Samareh Mirkia.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Khan, M.D., Fareed, I., ul Hassan Farooq, M. et al. Methodologies for enriched photocatalytic CO2 reduction: an overview. Int. J. Environ. Sci. Technol. 21, 3489–3526 (2024). https://doi.org/10.1007/s13762-023-05330-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13762-023-05330-9