Skip to main content

Advertisement

Log in

Chemical looping combustion with nanosize oxygen carrier: a review

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

This paper reports latest advancement on oxygen carriers (OCs) and effect of particle size from micro- to nanoscale in chemical looping combustion (CLC). CLC is basically a carbon capture and storage technology with the objective to reduce carbon dioxide emission from fossil fuel-based power plants, and it has the potential to reduce the global warming. Attention has been drawn toward utilization of nanosize-based oxygen carrier for bulk application. CLC is a novel technology for combustion of fossil fuels that avoids dilution of carbon dioxide (CO2) with flue gases. Performance of CLC system depends upon redox reactivity and stability of oxygen carrier particles at high operating temperature. Oxides of metals like nickel, iron, copper, and mixed metals have also been discussed. Tendency of discussed nano-OC to agglomerate and stability at high temperature can be addressed by the use of suitable inert support materials. Reactivity of oxygen carrier increases with decreasing particle sizes from micro- to nanosize. Recent developments in nanosized oxygen carriers can be exploited for application. The challenges associated with nanosize oxygen carriers are stabilization and agglomeration at temperature above 600 °C. Different techniques have been proposed and investigated to overcome challenges. Various metal/metal oxide pair has been evaluated for its oxygen bearing capacity, stability, and resistance to agglomeration. Stability and agglomeration of nanosize oxygen carrier at temperature above 700 °C is an open issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AR:

Air reactor

E A :

Activation energy

CLC:

Chemical looping combustion

CCS:

Carbon capture sequestration

CCT:

Carbon capture technology

CC:

Combustion chamber

CO2 :

Carbon dioxide

CO:

Carbon monoxide

∆:

Change in property

°C:

Degree celsius

k :

Equilibrium constant

EOR:

Enhanced oil recovery

FR:

Fuel reactor

m ox :

Fully oxidized metal

m red :

Fully reduced metal oxide

H r :

Heat absorbed/released during reduction

H o :

Heat absorbed/released during oxidation

H c :

Heat of combustion

H2 :

Hydrogen

CnH2m :

Hydrocarbon fuel

CH4 :

Methane

MEA:

Monoethaloamine

DMEA:

Diethaloamine

M:

Metal

MyOx :

Metal oxide

N2 :

Nitrogen

SOx :

Oxide of sulfur

NOx :

Oxide of nitrogen

O2 :

Oxygen

OC:

Oxygen carrier

x :

Particle size (nm)

MyOx−1 :

Reduced metal oxide

R o :

Oxygen carrying capacity

T :

Temperature (K)

TEM:

Transmission electron microscopy

H2O:

Water vapor

XRD:

X-ray diffraction

References

  • Abad A, Mattisson T, Lyngfelt A, Ryden M (2006) Chemical-looping combustion in a 300 W continuously operating reactor system using a manganese-based oxygen carrier. Fuel 85:1174–1185

    CAS  Google Scholar 

  • Abad A, Mattisson T, Lyngfelt A, Johansson M (2007a) The use of iron oxide as oxygen carrier in a chemical-looping reactor. Fuel 86:1021–1035

    CAS  Google Scholar 

  • Abad A, Adanez J, Garcia-Labiano F, de Diego L, Gayan P, Celaya J (2007b) Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion. Chem Eng Sci 62:533–549

    CAS  Google Scholar 

  • Adanez J, de Diego LF, Labiano GF, Gayan P, Abad A (2004) Selection of oxygen carriers for chemical-looping combustion. Energy Fuels 18:371–377

    CAS  Google Scholar 

  • Adanez J, Garcia-Labiano F, de Diego LE, Gayan P, Celaya J, Abad A (2006) Nickel–copper oxygen carriers to reach zero CO and H2 emissions in chemical-looping combustion. Ind Eng Chem Res 45:2617–2625

    CAS  Google Scholar 

  • Agrawal KK, Jain S, Jain AK et al (2014) Assessment of greenhouse gas emissions from coal and natural gas thermal power plants using life cycle approach. Int J Environ Sci Technol 11:1157–1164

    CAS  Google Scholar 

  • Alalwan HA, Cwiertny DM, Grassian VH (2017) Co3O4 nanoparticles as oxygen carriers for chemical looping combustion: a materials characterization approach to understanding oxygen carrier performance. J Chem Eng 319:279–287

    CAS  Google Scholar 

  • Bhavsar S, Najera M, Veser G (2012) Chemical looping dry reforming as novel, intensified process for CO2 activation. Chem Eng Technol 35:1281–1290

    CAS  Google Scholar 

  • Chang FC, Liao PH, Tsai CK, Hsiao MC, Wang HP (2014) Chemical-looping combustion of syngas with nano CuO–NiO on chabazite. Appl Energy 113:1731–1736

    CAS  Google Scholar 

  • Cho P, Mattisson T, Lyngfelt A (2004) Comparison of iron, nickel, copper, and manganese based oxygen carriers for chemical-looping combustion. Fuel 83:1225–1245

    Google Scholar 

  • Cho P, Mattisson T, Lyngfelt A (2005) Carbon formation on nickel and iron oxide-containing oxygen carriers for chemical-looping combustion. Ind Eng Chem Res 44:668–676

    CAS  Google Scholar 

  • Corbella BM, Palacios JM (2007) Titania-supported iron oxide as oxygen carrier for chemical looping combustion of methane. Energy Fuels 86:113–122

    CAS  Google Scholar 

  • Corbella BM, de Diego LF, Garcia-Labiano F, Adanez J, Palacios JM (2005a) Performance in a fixed-bed reactor of titania-supported nickel oxide as oxygen carriers for chemical-looping combustion of methane in multicycle tests. Energy Fuels 19:433–441

    CAS  Google Scholar 

  • Corbella BM, de Diego LF, Gracia-Labiano F, Adanez J, Palacios JM (2005b) Characterization study and five-cycle tests in a fixed-bed reactor of titanium supported nickel oxide as oxygen carriers for the chemical-looping combustion of methane. Environ Sci Technol 39:5736–5803

    Google Scholar 

  • Corbella BM, de Diego LF, Garcia-Labiano F, Adanez J, Palacios JM (2006a) Performance in a fixed-bed reactor of titania-supported nickel oxide as oxygen carriers for chemical-looping combustion of methane in multicycletests. Ind Eng Chem Res 45:157–165

    CAS  Google Scholar 

  • Corbella BM, de Diego LF, Gracia-Labiano F, Adanez J, Palacios JM (2006b) Characterization and performance in a multicycle test in a fixed-bed reactor of silica-supported copper oxide as oxygen carrier for chemical-looping combustion. Energy Fuels 20:148–154

    CAS  Google Scholar 

  • de Diego LF, Garcia-Labiano F, Adanez J, Gayan P, Abad A, Corbella BM, Palacios JM (2004) Development of Cu-based oxygen carriers for chemical looping combustion. Fuel 83:1749–1757

    Google Scholar 

  • de Diego LF, Garcia-Labiano F, Gayan P, Cylaya J, Palacios JM, Adanez J (2007) Operation of a 10 kWth chemical-looping combustor during 200 h with a CuO–Al2O3 oxygen carrier. Fuel 86:1036–1045

    Google Scholar 

  • Garcia MF, Rodriguez JA (2007) Metal oxide nanoparticles. Brookhaven National Laboratory, New York BNL-79479-2007-BC

    Google Scholar 

  • Ghasemian S, Faridzad A, Abbaszadeh P et al (2020) An overview of global energy scenarios by 2040: identifying the driving forces using cross-impact analysis method. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-020-02738-5

    Article  Google Scholar 

  • Gielen D (2003) The impact of CO2 capture and storage on future gas use. Presented at Global Watch Seminar, Norway NTNU Trondheim

    Google Scholar 

  • Hossain MM, de Lasa HI (2007) Reactivity and stability of Co–Ni/Al2O3 oxygen carrier in multicycle chemical-looping combustion. AIChE J 53:1817–1829

    CAS  Google Scholar 

  • Hossain MM, de Lasa HI (2008) Chemical-looping combustion (CLC) for inherent CO2 separations—a review. Chem Sci Eng 63:4433–4451

    CAS  Google Scholar 

  • Ishida M, Jin H (1996) A novel chemical-looping combustor without NOxformation. Ind Eng Chem Res 35:2469–2472

    CAS  Google Scholar 

  • Ishida M, Jin H (1997) CO2 recovery in a power plant with chemical looping combustion. Energy Convers Manag 38:187–192

    Google Scholar 

  • Ishida M, Zheng D, Akehata T (1987) Evaluation of a chemical-looping combustion power-generation system by graphic energy analysis. Energy 12:147–154

    CAS  Google Scholar 

  • Ishida M, Jin H, Okamoto T (1998) Kinetic behavior of solid particles in chemical looping combustion: suppressing carbon deposition in reduction. Energy Fuels 12:223–229

    CAS  Google Scholar 

  • Jerndal E, Mattisson T, Lyngfelt A (2006) Thermal analysis of chemical-looping combustion. Chem Eng Res Des 84:795–806

    CAS  Google Scholar 

  • Jin H, Okamoto T, Ishida M (1999) Development of novel chemical-looping combustion: synthesis of solid looping material of Ni/NiAl2O4. Ind Eng Chem Res 38:126–132

    CAS  Google Scholar 

  • Johansson E, Lyngfelt A, Mattisson T, Johannon F (2002) A circulating fluidized bed combustor system with inherent CO2 separation-application of chemical looping combustion. In: Grace JR, Zhu J, de Lasa H (eds) Circulating fluidized bed technology VII. Canadian Society for Chemical Engineering, Ottawa, pp 717–724

    Google Scholar 

  • Johansson E, Mattisson T, Lyngfelt A, Thunman H (2006a) A 300 W laboratory reactor system for chemical looping combustion with particle circulation. Energy Fuels 85:1428–1438

    CAS  Google Scholar 

  • Johansson E, Mattisson T, Lyngfelt A, Thunman H (2006b) Combustion of syngas and natural gas in a 300 W chemical-looping combustor. Chem Eng Res Des 84:819–827

    CAS  Google Scholar 

  • Johansson M, Mattisson T, Lyngfelt A (2006c) Creating a synergy effect by using mixed oxides of iron- and nickel oxides in the combustion of methane in a chemical-looping combustion reactor. Energy Fuels 20:2399–2407

    CAS  Google Scholar 

  • Junming Fan, Hui Hong, Hongguang Jin (2019) Life cycle global warming impact of CO2 capture by in situ gasificationchemical looping combustion using ilmenite oxygen carriers. J Clean Prod 234:568–578

    Google Scholar 

  • Koljonen T, Siikavirta H, Zevenhoven R, Savolainen I (2002) CO2 capture, storage and reuse potential. CLIMTECH report PRO4/T7504/2, VITT processes, Finland

  • Koljonen T, Siikavirta H, Zevenhoven R, Savolainen I (2004) CO2 capture, storage and reuse potential in Finland. Energy 29:1521–1527

    CAS  Google Scholar 

  • Koronberger B, Lyngfelt A, Loffler G, Hofbauer H (2005) Design and fluid dynamic analysis of a bench-scale combustion system with CO2 separationchemical-looping combustion. Ind Eng Chem. Res 44:546–556

    Google Scholar 

  • Liu Y, Kirchesch P, Graule T, Liersch A, Clemens F (2015) Nanoparticle prepared mechanically stable hierarchically porous silica granulates and their application as oxygen carrier supports for chemical looping combustion. J Mater Chem A 3:11863–11873

    CAS  Google Scholar 

  • Lyngfelt A, Leckner B, Mattisson T (2001) A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion. Chem Eng Sci 56:3101–3113

    CAS  Google Scholar 

  • Mattisson T, Lyngfelt A (2001). Capture of CO2 using chemical-looping combustion. In: Proceedings of first biennial meeting of the scandinavian-nordic section of the combustion institute, April 18–20, Goteborg, Sweden

  • Mattisson T, Johansson M, Lyngfelt M (2003) Reactivity of some metal oxides supported on alumina with alternating and oxygen-application of chemicallooping combustion. Energy Fuel 17:643–651

    CAS  Google Scholar 

  • Mattisson T, Johansson M, Lyngfelt A (2004) Multicycle reduction and oxidation of different types of iron oxide particles–application to chemical-looping combustion. Energy Fuel 18:628–637

    CAS  Google Scholar 

  • Mattisson T, Johansson M, Lyngfelt A (2006) The use of NiO as an oxygen carrier in chemical looping combustion. Fuel 85:736–747

    CAS  Google Scholar 

  • Noorman S, Gallucci F, Van Sint Annaland M, Kuipers JAM (2011) Experimental investigation of chemical-looping combustion in packed beds: a parametric study. Ind Eng Chem Res 50:1968–1980

    CAS  Google Scholar 

  • Padurean A, Cormos CC, Cormos AM, Agachi PS (2010) Technical assessment of CO2 captures using alkanolamines solutions. StudiaUniversities Babes-Bolyai, Chemia, pp 55–64

    Google Scholar 

  • Padurean A, Cormos CC, Agachi PS (2012) Pre-combustion carbon dioxide capture by gas–liquid absorption for integrated gasification combined cycle power plants. Int J Greenhouse Gas Control 07:1–11

    CAS  Google Scholar 

  • Pang JM, Guo PM (2009) Influence of size of Hematite powder on its reduction kinetics by H2 at low temperature. Int J Iron Steel Res 16:7–11

    CAS  Google Scholar 

  • Park JN, Zhang P, Hu YS, McFarland EW (2010) Synthesis and hicharacterization of sintering-resistant silica-encapsulated Fe3O4 magnetic nanoparticles active for oxidation and chemical looping combustion. Nanotechnology 21:225708

    Google Scholar 

  • Rao AB, Rubin ES (2002) A technical economic and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ Sci Technol 36:4467–4475

    CAS  Google Scholar 

  • Readman JE, Olafsen A, Larring Y, Blom R (2005) La0.8Sr0.2Co0.2Fe0.8O3-as a potential oxygen carrier in a chemical looping type reactor, an in situ powder X-ray diffraction study. J Mater Chem 15:1931–1937

    CAS  Google Scholar 

  • Richter HJ, Knoche KF (1983) Reversibility of combustion processes. ACS Symp Ser 235:71–85

    CAS  Google Scholar 

  • Ryu HJ, Bae DH, Jin GT (2002a) Chemical-looping combustion process with inherent CO2 separation: reaction kinetics of oxygen carrier particles and 50 kWth reactor design. The World Congress of Korean and Korean Ethnic Scientists and Engineers. Seoul Korea, pp 738–743

  • Ryu HJ, Jin G, Yi C (2002b) Demonstration of inherent CO2 separation and no NOxemission in a 50 kW chemical-looping combustor: continuous reduction and oxidation experiment. Korean Institute of Energy Research Daejeon, Korea

    Google Scholar 

  • Ryu HJ, Bae DH, Jo SH, Jin GT (2004) Reaction characteristics of Ni and NiO based oxygen carrier particles for chemical looping combustor. Korean Chem Eng Res 42:107–114

    CAS  Google Scholar 

  • Sedor KE, Hossain MM, de Lasa HI (2008a) Reactivity and stability of Ni/Al2O3 oxygen carrier for chemical-looping combustion (CLC). Chem Eng Sci 63:2994–3007

    CAS  Google Scholar 

  • Sedor KE, Hossain MM, deLasa HI (2008b) Reduction kinetics of a fluidizable nickel-alumina oxygen carrier for chemical-looping combustion. Can J Chem Eng 86:323–334

    CAS  Google Scholar 

  • Shadab A, Pradeep KJ, Yamuna RK, Sumana C (2017) Self-sustained process scheme for high purity hydrogen production using sorption enhanced steam methane reforming coupled with chemical looping combustion. J Clean Prod 162:687–701

    Google Scholar 

  • Sinfelt JH (1983) Bimetallic catalysts: discoveries concepts and applications, an exxon monograph. Wiley, New York

    Google Scholar 

  • Solunke RD, Veser G (2009) Nanocomposite oxygen carriers for chemical-looping combustion of sulfur-contaminated synthesis gas. Energy Fuels 23:4787–4796

    CAS  Google Scholar 

  • Tian H, Chaudhari K, Simonyi T, Poston J, Liu T, Sanders T, Veser G, Siriwardane R (2008) Chemical-looping combustion of coal-derived synthesis gas over copper oxide oxygen carriers. Energy Fuels 22:3744–3755

    CAS  Google Scholar 

  • Wolf J (2004) CO2 mitigation in advanced power cycles-chemical looping combustion and steam-based gasification. Doctoral thesis, Department of Chemical Engineering and Technology Energy Processes, KTH-Royal Institute of Technology, SE-100 44 Stockholm, Sweden

  • Yangdong He, Lin Zhu, Luling Li, Ling Sun (2019) Zero-energy penalty carbon capture and utilization for liquid fuel and power cogeneration with chemical looping combustion. J Clean Prod 235:34–43

    Google Scholar 

  • Younas M, Sohail M, Leong LK et al (2016) Feasibility of CO2 adsorption by solid adsorbents: a review on low-temperature systems. Int J Environ Sci Technol 13:1839–1860

    CAS  Google Scholar 

  • Zafar Q, Mattisson T, Gevert B (2005) Integrated hydrogen and power production with CO2 capture using chemical looping reforming-redox reactivity of particles of CuO, Mn2O3, NiO, and Fe2O3 using SiO2 as support. Ind Eng Chem Res 44:3485–3496

    CAS  Google Scholar 

  • Zafar Q, Mattisson T, Gevert B (2006) Redox investigation of some oxides of transition-state metals Ni, Cu, Fe, and Mn supported on SiO2 and MgAl2O4. Energy Fuels 20:34–44

    CAS  Google Scholar 

Download references

Acknowledgement

We thankfully acknowledge the support and finance grant by SERB, Department of Science & Technology, Government of India vide file no. CRG/2019/001266

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Hassan.

Additional information

Editorial responsibility: Fatih ŞEN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, W., Sanjay & Hassan, M.A. Chemical looping combustion with nanosize oxygen carrier: a review. Int. J. Environ. Sci. Technol. 18, 787–798 (2021). https://doi.org/10.1007/s13762-020-02840-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-020-02840-8

Keywords

Navigation