Skip to main content

Advertisement

Log in

Assessing ecological impairments in Neotropical rivers of Mexico: calibration and validation of the Biomonitoring Working Party Index

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Freshwater ecosystems are one of the most endangered and threatened ecosystems worldwide, particularly in developing countries, where population growth, industrialization, urbanization, and changes in land use are increasing. In Mexico, water ecosystems are severely impacted and an easy-to-use tool is needed for monitoring freshwater ecosystems. This study presents the development of a calibration and validation procedure for the Biological Monitoring Working Party Index using physical–chemical and biological data from Neotropical rivers in Mexico (Apatlaco and Chalma-Tembembe). Water quality and macroinvertebrates were monitored in four campaigns including the dry and rainy seasons (2012–2013). Calibration of the index was performed in the following steps: determination of a physicochemical quality index, identification of the abundance class for each family of macroinvertebrates, incorporation of abundances in the corresponding physicochemical quality index interval, and determination of bioindication values for each macroinvertebrate family. With the calibrated values, the index was assessed for each study site and period. The calibrated index was validated by a statistical test. Ranges for water quality categories were defined by three statistical procedures. The range of the Biological Monitoring Working Party Index was tested with study sites from adjacent sub-basins. The Chalma-Tembembe River in agricultural areas comprised the categories “Bad polluted” to “regular and moderately polluted,” whereas the largest portion of the Apatlaco River in urban zones comprised “Bad, very polluted” to “Bad, extremely polluted.” Thus, the calibrated index is a suitable biomonitoring tool, allowing the detection of zones that need urgent management and a recovery plan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alba-Tercedor J (1996) Macroinvertebrados acuáticos y calidad de las aguas de los ríos. IV Simposio del agua en Andalucía 2:203–213

    Google Scholar 

  • Allan JD (2004) Landscapes and Riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol Syst 35:257–284

    Article  Google Scholar 

  • APHA (2005) Standard methods for examination of water and waste-water, 21st edn. APHA, Washington, DC

    Google Scholar 

  • Armitage PD, Moss D, Wright JF, Furse MT (1983) The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites. Water Res 17:333–347

    Article  CAS  Google Scholar 

  • Arreguín CFI, López PM, Marengo MH (2011) Mexico’s water challenges for the 21st century. In: Spring O (ed) Water resources in Mexico: scarcity, degradation, stress, conflicts, management and policies. Springer, Berlin

    Google Scholar 

  • Axworthy TS, Sandford B (2012) Water and global security. In: Bigas H (ed) The global water crisis: addresing an urgent security issue. Papers for the interaction council, 2011–2012. UNU-INWEH, Hamilton

    Google Scholar 

  • Balian EV, Segers H, Lévêque C, Martens K (2008) The freshwater animal diversity assessment: an overview of the results. Hydrobiologia 595:627–637

    Article  Google Scholar 

  • Baptista DF, Buss DF, Egler M, Giovanelli A, Silveira MP, Nessimian JL (2007) A multimetric index based on benthic macroinvertebrates for evaluation of Atlantic Forest streams at Rio de Janeiro State, Brazil. Hydrobiologia 575:83–94

    Article  Google Scholar 

  • Barbour MT, Gerritsen J, Snyder BD, Stribling JB (1999) Rapid bioassessment protocols for use in streams and Wadeable Rivers: periphyton, benthic macroin-vertebrates, and fish, 2nd edn. EPA 841-0B-99-002 U. S Environmental Protection Agency Office of Water, Washington, DC

    Google Scholar 

  • Canadian Drinking Water Guideliness (2012) http://www.hc-sc.gc.ca/ewh-semt/watereau/drink-potab/guide/index-eng.php

  • Chang F, Lawrence JE, Ríos-Touma B, Resh VH (2014) Tolerance values of benthic macroinvertebrates for stream biomonitoring: assessment of assumptions underlying scoring systems worldwide. Environ Monit Assess 186:2135–2149

    Article  CAS  Google Scholar 

  • CONABIO (1997) Provincias biogeográficas de México. Catálogo de metadatos geográficos. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. http://www.conabio.gob.mx/informacion/metadata/gis/rbiog4mgw.xml?_xsl=/db/metadata/xsl/fgdc_html.xsl&_indent=no. Accessed 10 Jan 2016

  • CONAGUA. Comisión Nacional del Agua (2010) Programa hídrico visión 230 del estado de Morelos. Secretaría de Medio Ambiente y Recursos Naturales, México

    Google Scholar 

  • CONAGUA. Comisión Nacional del Agua (2012a) El saneamiento del río Apatlaco. De lo crítico a lo sustentable. Secretaría de Medio Ambiente y Recursos Naturales, 50 páginas, México

  • CONAGUA. Comisión Nacional del Agua (2012b) Atlas del agua en México. Secretaría de Medio Ambiente y Recursos Naturales, México

    Google Scholar 

  • Czerniawska-Kusza I (2005) Comparing modified biological monitoring working party score system and several biological indices based on macroinvertebrates for water-quality assessment. Limnologica 35:169–176

    Article  Google Scholar 

  • Diario Oficial de Costa Rica (2005) Reglamentan calidad de agua potable. http://www.tec-digital.itcr.ac.cr/file/5972860/Reglamento-de-Calidad-del-Agua-Potable-32327-S-La-Gaceta-84.pdf

  • Ding J, Jiang Y, Fu L, Liu Q, Peng Q, Kang M (2015) Impacts of land use on surface water quality in a subtropical River Basin: a case study of the Dongjiang River Basin, Southeastern China. Water 7:4427–4445. doi:10.3390/w7084427

    Article  Google Scholar 

  • Dinius SH (1987) Design of an index of water quality. Water Resour Bull 23:833–843

    Article  CAS  Google Scholar 

  • Dolédec S, Statzner B (2010) Responses of freshwater biota to human disturbances: contributions to J-NABS developments in ecological integrity assessments. J N Am Benthol Soc 29:286–311

    Article  Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182

    Article  Google Scholar 

  • Dunbar M, Murphy J, Clarke R, Baker R, Davies C, Scarlett P (2010) Countryside survey technical report No. 8/07. Headwater Streams Report from 2007. http://nora.nerc.ac.uk/9434/1/CS_Headwater_Streams_Report_from_2007_-_Final.pdf

  • EPA. Environmental Protection Agency (2003) www.epa.gov. Last Access December 2014

  • Ferreira WR, Paiva RT, Callisto M (2011) Development of a benthic multimetric index for biomonitoring a Neotropical watershed. Braz J Biol 71:15–25

    Article  CAS  Google Scholar 

  • Hawkes HA (1997) Origin and development of the biological monitoring working party score system. Water Res 32:964–968

    Article  Google Scholar 

  • Hawkins CP, Norris RH, Gerritsen J, Hughes RM, Jackson SK, Johnson RK, Stevenson RJ (2000) Evaluation of the use of landscape classifications for the prediction of freshwater biota: synthesis and recommendations. J N Am Benthol Soc 19:541–556

    Article  Google Scholar 

  • Hurtado SF, García-Trejo Gutiérrez-Yurrita PJ (2005) Importancia ecológica de los macroinvertebrados bentónicos de la subcuenca del río San Juan, Querétaro, México. Folia Entomológica Mexicana 44:271–286

    Google Scholar 

  • Kibichii S, Shivoga WA, Muchiri M, Miller SN (2007) Macroinvertebrate assemblages along a land-use gradient in the upper River Njoro watershed of Lake Nakuru drainage basin, Kenya. Lakes Reserv Res Manag 12:107–117

    Article  Google Scholar 

  • Lakew A, Moog O (2015) A multimetric index based on benthic macroinvertebrates for assessing the ecological status of streams and rivers in central and southeast highlands of Ethiopia. Hydrobiologia 751:229–242

    Article  Google Scholar 

  • Lazaridou-Dimitriadou M (2002) Seasonal variation of the water quality of rivers and streams of eastern Mediterranean. Web Ecol 3:20–32

    Article  Google Scholar 

  • Leunda PM, Oscoz J, Miranda R, Ariño AH (2009) Longitudinal and seasonal variation of the benthic macroinvertebrate community and biotic indices in an undisturbed Pyrenean river. Ecol Indicators 9:52–63

    Article  Google Scholar 

  • Leung AS, Dudgeon D (2011) Scales of spatiotemporal variability in macroinvertebrate abundance and diversity in monsoonal streams: detecting environmental change. Freshw Biol 56:1193–1208

    Article  Google Scholar 

  • López-López E, Sedeño-Díaz JE (2015) Biological indicators of water quality: the role of fish and macroinvertebrates as indicators of water quality. In: Armon RH, Hänninen O (eds) Environmental indicators. Springer, Dordrecht, pp 643–661

    Google Scholar 

  • Luján KN, Roach KA, Jacobsen D, Winemiller KO, Meza V, Rimarachín V, Arana J (2013) Aquatic community structure across an Andes-to-Amazon fluvial gradient. J Biogeogr 40:1715–1728

    Article  Google Scholar 

  • Mercado-Silva N, Lyons J, Salgado G, Medina M (2002) Validation of a fish-based index of biotic integrity for streams and rivers of central México. Rev Fish Biol Fisher 12:179–191

    Article  Google Scholar 

  • Merrit RW, Cummins KW, Berg MB (2008) An introduction to the aquatic insects of North America. Kendall/Hunt Publishing Company, Dubuque

    Google Scholar 

  • Moriasi DN, Arnold JG, van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900

    Article  Google Scholar 

  • Mustow SE (2002) Biological monitoring of rivers in Thailand: use and adaptation of the BMWP score. Hydrobiologia 479:191–229

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models Part I—a discussion of principles. J Hydrology 10:282–290

    Article  Google Scholar 

  • Norma Oficial Mexicana (1994) NOM-127-SSA1-1994. Salud ambiental, agua para uso y consumo humano-límites permisibles de calidad y tratamientos a que debe someterse el agua para su potabilizacion, México

  • Norma Oficial Mexicana (1996) NOM-001-SEMARNAT-1996. Establece los límites máximos permisibles de contaminantes en las descargas de aguas residuales en aguas y bienes nacionales, México

  • Normas Técnicas de Calidad del Agua Potable (1998) Colombia. DEC475/98. Decreto 475 de 1998. Diario Oficial de Colombia

  • Oertel N, Salánki J (2003) Biomonitoring and bioindicators in aquatic ecosystems. In: Ambasht RS, Ambasht NK (eds) Modern trends in applied aquatic ecology. Kluwer Academic/Plenum Publishers, New York, pp 219–246

    Chapter  Google Scholar 

  • Pérez RM, Aguilera MS, Mora JL (2006) Monitoreo ambiental del río “Cupatitzio”, en la cabecera de la microcuenca y dentro del Parque Nacional “Barranca del Cupatitzio”, en la ciudad de Uruapan, Michoacán. Biológicas Revista de la Facultad de Biología de la Universidad Michoacana de San Nicolás de Hidalgo 8:18–30

    Google Scholar 

  • Pérez-Munguía R, Pineda-López R, Medina-Nava M (2007) Integridad biótica de ambientes acuáticos. In: Sánchez O, Herzig M, Peters E, Márquez R, Zambrano L (eds) Perspectivas sobre Conservación de Ambientes Acuáticos en México. SEMARNAT, México, pp 71–111

    Google Scholar 

  • Pond GJ, McMurray SE (2002) A macroinvertebrate Bioassesment Index for headwater streams of the eastern Coalfield region, Kentucky. Kentucky Department for Environmental Protection, Kentucky

    Google Scholar 

  • Porst G, Naughton O, Gill L, Johnston P, Irvine K (2012) Adaptation, phenology and disturbance of macroinvertebrates in temporary water bodies. Hydrobiologia 696:47–62

    Article  Google Scholar 

  • Resh VH (2007) Multinational freshwater biomonitoring programs in the developing world: lessons learned from South African and South East Asian river surveys. Environ Manag 39:737–748

    Article  Google Scholar 

  • Resh VH (2008) Which group is best? Attributes of different biological assemblages used in freshwater biomonitoring programs. Environ Monit Assess 138:131–138

    Article  Google Scholar 

  • Ríos-Touma B, Acosta R, Prat N (2014) The Andean Biotic Index (ABI): revised tolerance to pollution values for macroinvertebrate families and index performance evaluation. Rev Biol Trop 62:249–273

    Article  Google Scholar 

  • Riss W, Ospina R, Gutiérrez JD (2002) Establecimiento de valores de bioindicación para macroinvertebrados acuáticos de la sabana de Bogotá. Caldasia 24:135–156

    Google Scholar 

  • Ruiz-Picos RA, Sedeño-Díaz JE, López-López E (2016) Aquatic macroinvertebrates assemblages related to diverse land uses in the Apatlaco and Chalma-Tembembe rivers (Balsas basin), Hidrobiologica 26(3):443–458

    Google Scholar 

  • Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM (2001) Validation of the SWAT model on a large river basin with point and nonpoint sources. J Am Water Resour Assoc 37:1169–1188

    Article  CAS  Google Scholar 

  • Sedeño-Díaz JE, López-López E (2007) Water quality in the río Lerma, México: an overview of the last quarter of the twentieth century. Water Resour Manag 21:1797–1812

    Article  Google Scholar 

  • SEMARNAT (2008) La Cuenca del río Apatlaco. Recuperemos el patrimonio ambiental de los morelenses. Comisión Nacional del Agua, México City

    Google Scholar 

  • Sermeño-Chicas JM, Serrano L, Springer M, Paniagua MR, Pérez D, Rivas AW, Menjívar RA et al (2010) Determinación de la Calidad Ambiental de las Aguas de los Ríos de El Salvador, Utilizando Invertebrados Acuáticos: Índice Biológico a Nivel de Familias de Invertebrados Acuáticos en El Salvador (IBF-SV-2010). Editorial Universitaria UES, San Salvador

    Google Scholar 

  • Springer M, Vázquez D, Castro A, Kohlmann B (2007) Field-guide for water quality bioindicators. EARTH-UCR, San José

    Google Scholar 

  • Thorne RS, Williams WP (1997) The response of benthic macroinvertebrates to pollution in developing countries: a multimetric system of bioassessment. Freshw Biol 37:671–686

    Article  Google Scholar 

  • Thorp JH, Covich AP (2001) Ecology and classification of North American freshwater invertebrates, 3a edn. Academic Press, Elsevier, Cambridge

    Google Scholar 

  • Weigel BM, Henne LJ, Martínez-Rivera LM (2002) Macroinvertebrate-based index biotic integrity for protection of stream in west-central México. J N Am Benthol Soc 21:686–700

    Article  Google Scholar 

  • WHO World Health Organization (2004) Guidelines for drinking-water quality, 3rd edn. Geneva. http://www.who.int/water_sanitation_health/dwq/GDWQ2004web.pdf

  • Willmott CJ (1981) On the validation of models. Phys Geogr 2:184–194

    Google Scholar 

  • Willmott CJ, Robeson SM, Matsuura K (2012) A refined index of model performance. Int J Climatol 32:2088–2094

    Article  Google Scholar 

  • World Economic Forum (2016) World economic forum annual meeting 2016. https://www.weforum.org/events/world-economic-forum-annual-meeting-2016. Accessed 16 June 2016

  • Wu N, Huang J, Schmalz B, Fohrer N (2013) Modeling daily chlorophyll a dynamics in German lowland rivers using artificial neural networks and multiple linear regression approaches. Limnology 15:47–56. doi:10.1007/s10201-013-0412-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the economic support received from the join Fund of the National Science and Technology Council (CONACyT) and the Morelos Government, Project FOMIX CONACyT Gant number 173996, as well as the Research and Posgraduate Studies Secretariat (SIP 20121087), and also appreciate the critical review of this manuscript by Alex Gilman, Jane Yeomans, and Kent McLeod, all from EARTH University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. López-López.

Additional information

Editorial responsibility: Rupali Datta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 11 kb)

Supplementary material 2 (XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Picos, R.A., Kohlmann, B., Sedeño-Díaz, J.E. et al. Assessing ecological impairments in Neotropical rivers of Mexico: calibration and validation of the Biomonitoring Working Party Index. Int. J. Environ. Sci. Technol. 14, 1835–1852 (2017). https://doi.org/10.1007/s13762-017-1299-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1299-x

Keywords

Navigation