Skip to main content
Log in

Competitive adsorption of metal ions onto goethite–humic acid-modified kaolinite clay

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

A binary mixture of humic acid and geothite was prepared and used to modify kaolinite to produce geothite–humic acid (GHA)-modified kaolinite adsorbent useful for the adsorption of Pb2+, Cd2+, Zn2+, Ni2+ and Cu2+ from Single and Quinary (5) metal ion systems. The cation exchange capacity (CEC) and specific surface area of GHA-modified kaolinite clay adsorbent were found to be 40 meq/100 g and 13 m2/g, respectively, with the CEC being five times that of raw kaolinite clay (7.81 meq/100 g). The Langmuir–Freundlich equilibrium isotherm model gave better fit to experimental data as compared with other isotherm models. In Quinary metal ion system, the presence of Zn2+ and Cu2+ appears to have an antagonistic effect on the adsorption of Pb2+, Cd2+ and Ni2+, while the presence of Pb2+, Cd2+ and Ni2+ shows a synergistic effect on the adsorption of Zn2+ and Cu2+. The GHA-modified kaolinite showed strong preference for the adsorption of Pb2+ in both metal ion systems. Brouers–Weron–Sotolongo (BWS) kinetic model gave better fit to kinetic data compared with other kinetic models used. Data from BWS kinetic model indicate that adsorption of metal ions onto GHA-modified adsorbent in both metal ion systems followed strictly, diffusion-controlled mechanism with adsorption reaction proceeding to 50 % equilibrium in <2 min in the Single metal ion system and <1 min in the Quinary metal ion system. Adsorption of metal ions onto GHA-modified kaolinite is fairly spontaneous and endothermic in nature in both metal ion systems although the rate of metal ion uptake and spontaneity of reaction are reduced in the Quinary metal ion system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adebowale KO, Unuabonah EI, Olu-Owolabi BI (2005) Adsorption of some heavy metal ions on sulfate- and phosphate-modified Kaolin. Appl Clay Sci 29:145–148

    Article  CAS  Google Scholar 

  • Adebowale KO, Unuabonah EI, Olu-Owolabi BI (2006) The effect of some operating variables in the adsorption of lead and cadmium ions unto modified Kaolin clay. J Hazard Mater B134:130–139

    Article  Google Scholar 

  • Akpa OM, Unuabonah EI (2011) Small-sample corrected Akaike information criterion: an appropriate statistical tool for ranking of adsorption isotherm models. Desalination 272(1–3):20–26

    Article  CAS  Google Scholar 

  • Alekseeva TV, Zolotareva BN (2013) Fractionation of humic acids upon adsorption on Montmorillonite and Palygorskite. Eurasian Soil Sci 46:622–634

    Article  CAS  Google Scholar 

  • Aliyu AA, Aluko BA, Biliaminu KO (1996) Priority investment projects in the solid minerals sector. Raw materials Research and Development Council, Abuja, pp 12–14

  • Anderson O (1981) Chelation of cadmium. Environ Health Perspect 54:249–266

    Article  Google Scholar 

  • Apak R (2002) Adsorption of heavy metal ions on soil surfaces and similar substances. In Encyclopedia of surface & colloid science. Marcel Dekker, New York

    Google Scholar 

  • Backes CA, McLaren RG, Rate AW (1995) Kinetics of cadmium and cobalt desorption from Iron and manganese oxides. J Hazard Mater B95:251–273

    Google Scholar 

  • Bayat B (2002) Comparative study of adsorption properties of Turkish fly ashes I. The case of nickel(II), copper(II) and zinc(II). J Hazard Mater B10:285–300

    Google Scholar 

  • Bhattacharyya KG, Gupta SS (2009) Calcined tetrabutylammonium kaolinite and montmorillonite and adsorption of Fe(II), Co(II) and Ni(II) from solution. Appl Clay Sci 46:216–221

    Article  CAS  Google Scholar 

  • Bhattacharyya KG, Gupta SS (2011) Removal of Cu(II) by natural and acid-activated clays: an insight of adsorption isotherm, kinetic and thermodynamics. Desalination 272:66–75

    Article  CAS  Google Scholar 

  • Buffle J (1985) Complexation reactions in aquatic systems: an analytical approach. Ellis Horwood, Chichester

    Google Scholar 

  • Chapman HD (1965) Cation exchange capacity. In: Black CA (ed) Methods of soil analysis Part 2. Number 9 in the series Agronomy: American Society of Agronomy, Madison, Wisconsin, p 891–901

  • Choppin GR (1992) The role of natural organics in Radionuclide migration in natural aquifier systems. Radiochim Acta 113:58–59

    Google Scholar 

  • Davies JA (1982) Adsorption of natural dissolved organic matter at the oxide/water interface. Geochim Cosmochim Acta 46:2381–2393

    Article  Google Scholar 

  • Echeverria J, Indurain J, Churio E, Garrido J (2003) Simultaneous effect of pH, temperature, ionic strength, and initial concentration on the retention of Ni on illite. Colloids Surf Physicochem Eng Aspects 218:175–187

    Article  CAS  Google Scholar 

  • Gaspard S, Altenor S, Passe-Coutrin N, Ouensanga A, Brouers F (2006) Parameters from a new kinetic equation to evaluate activated carbons efficiency for water treatment. Water Res 40:3467–3477

    Article  CAS  Google Scholar 

  • Gimenez J, Martinez M, de Pablo J, Rovira M, Duro L (2007) Arsenic sorption onto natural hematite, magnetite and geothite. J Hazard Mater 141:575–580

    Article  CAS  Google Scholar 

  • Glover LJ II, Eick MJ, Brady PV (2002) Desorption kinetics of cadmium and lead from goethite: influence of time and organic acids. Soil Sci Soc Am J 66:797–804

    Article  CAS  Google Scholar 

  • Grossi PR, Sparks DL (1994) Rapid kinetics of Cu(II) adsorption/desorption on goethite. Environ Sci Technol 28:1422–1429

    Article  Google Scholar 

  • Gupta SS, Bhattacharyya KG (2008) Immobilization of Pb(II), Cd(II) and Ni(II) ions on Kaolinite and Montmorillonite surfaces from aqueous medium. J Environ Manag 87:46–58

    Article  CAS  Google Scholar 

  • Hiraide M (1992) Heavy metal complexed with humic substance in fresh water. Anal Sci 8:453–459

    Article  CAS  Google Scholar 

  • Ho Y-S (2006) Review of second-order models for adsorption systems. J Hazard Mater B136:681–689

    Article  Google Scholar 

  • Jalali M, Moradi F (2013) Competitive sorption of Cd, Cu, Mn, Ni, Pb, and Zn in polluted and unpolluted calcacerous soils. Environ Monit Assess 185:8831–8846

    Article  CAS  Google Scholar 

  • Jiang M, Wang Q, Jin X, Chen Z (2009) Removal of Pb(II) from aqueous solution using modified and unmodified Kaolinite clay. J Hazard Mater 170:332–339

    Article  CAS  Google Scholar 

  • Journey JS, Anderson RM, Essington ME (2010) The adsorption of 2-Ketogluconate by geothite. Soil Sci Soc Am J 74:1119–1128

    Article  CAS  Google Scholar 

  • Jung J, Cho Y-H, Hahn P (1998) Comparative study of Cu2+ adsorption on geothite, hematite and kaolinite: mechanistic approach. Bull Korean Chem Soc 19:324–327

    CAS  Google Scholar 

  • Lackovic K, Angove MJ, Wells JD, Johnson BB (2003) Modelling the adsorption og Cd(II) onto Muloorina illite and related clay minerals. J Colloids Interface Sci 257:31–40

    Article  CAS  Google Scholar 

  • McBride MB (1994) Environmental soil chemistry. Oxford University Press, New York

    Google Scholar 

  • McCarthy JF, Czerwinski KR, Sanford WE, Jardine PM, Marsh JD (1998) Mobilization of transuranic radionuclides from disposal trenches by natural organic matter. J Contam Hydrol 30:49–77

    Article  CAS  Google Scholar 

  • Myers RT (1981) Rules of coordination number of metal ions. J Chem Educ 58(9):681

    Article  CAS  Google Scholar 

  • Olu-Owolabi BI, Popoola DB, Unuabonah EI (2010) Removal of Cu2+ and Cd2+ from aqueous solution by Bentonite clay modified with binary mixture of goethite and humic acid. Water Air Soil Pollut 211:459–474

    Article  CAS  Google Scholar 

  • Plavsic M, Cosovic B, Miletic S (1991) Comparison of the behaviours of copper, cadmium and lead in the presence of humic acid in sodium chloride solutions. Anal Chim Acta 255:15–21

    Article  CAS  Google Scholar 

  • Qi BC, Aldrich C (2008) Adsorption of heavy metals from aqueous solutions with tobacco dust. Bioresour Technol 99:5595–5601

    Article  CAS  Google Scholar 

  • Ricordel S, Taha S, Cisse I, Dorange G (2001) Heavy metals removal by adsorption onto peanut husks carbon: characterization, kinetic study and modeling. Sep Purif Technol 24:389–401

    Article  CAS  Google Scholar 

  • Saada A, Gaboriau H, Cornu S, Bardot F, Villieras F, Croue JP (2003) Adsorption of humic acid onto a kaolinite clay studied by high-resolution argon adsorption volumetry. Clay Miner 38:433–443

    Article  CAS  Google Scholar 

  • Saito T, Koopal LK, van Riemsdijk WH, Nagasaki S, Tanaka S (2004) Adsorption of humic acid on goethite: isotherms, charge adjustments, and potential profiles. Langmuir 20:689–700

    Article  CAS  Google Scholar 

  • Salman M, El-Eswed B, Khalili F (2007) Adsorption of humic acid on bentonite. Appl Clay Sci 38:51–56

    Article  CAS  Google Scholar 

  • Sears GW (1956) Determination of specific surface area of colloidal silica by titration with sodium hydroxide. J Anal Chem 28:1981–1983

    Article  CAS  Google Scholar 

  • Srivastava P, Singh B, Angove MJ (2005) Competitive adsorption behavior of heavy metals on kaolinite. J Colloids Interface Sci 290:28–38

    Article  CAS  Google Scholar 

  • Swift RS (1996) Organic matter characterization. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Summer ME (eds) Methods of soil analysis: chemical methods, vol 3. Soil Science Society of America (SSSA) book series 5, p 1011–1020

  • Takahashi Y, Minai Y, Ambe S, Makide Y, Ambe F (1999) Comparison of adsorption behavior of multiple inorganic ions on kaolinite and silica in the presence of humic acid using the multitracer technique. Geochim Cosmochim Acta 63:815–836

    Article  CAS  Google Scholar 

  • Taty-Costodes VC, Faudue H, Porte C, Delacroix A (2003) Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris. J Hazard Mater 105:121–142

    Article  CAS  Google Scholar 

  • Tipping E, Rey-Castro C, Bryan SE, Hamilton-Taylor J (2002) Al(III) and Fe(III) binding by humic substances in freshwaters, and implications for trace metal speciation. Geochim Cosmochim Acta 66:3211–3224

    Article  CAS  Google Scholar 

  • Unuabonah EI, Adebowale KO, Olu-Owolabi BI (2007) Kinetic and thermodynamic studies of the adsorption of lead(II) ions onto phosphate-modified kaolinite clay. J Hazard Mater 144:386–395

    Article  CAS  Google Scholar 

  • Unuabonah EI, Gunter C, Weber J, Lubahn S, Taubert A (2013) Hybrid clay: a new highly efficient Adsorbent for water treatment. ACS Sustain Chem Eng 1(8):966–973

    Article  CAS  Google Scholar 

  • Wang K, Xing B (2005) Structural and sorption characteristics of adsorbed humic acid on clay minerals. J Environ Qual 34:342–349

    Article  CAS  Google Scholar 

  • Wu J, West LJ, Stewart DI (2002) Effect of humic substances on Cu(II) solubility in kaolin-sand soil. J Hazard Mater B94:223–238

    Article  Google Scholar 

  • Yavuz O, Altunkaynak Y, Guzel F (2003) Removal of copper, cobalt and manganese from aqueous solution by kaolinite. Water Res 37:948–952

    Article  CAS  Google Scholar 

  • Zhao X-Q, Dong L-J, Cao Y, Mo S-J, Yi J-J, Xu Q-H (2013) Exfoliated LDHs modified with organic silicon reagent and their adsorption to metal ions from water. Chin J Inorg Chem 29(4):817–825

    CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate with thanks the Department of Chemistry, University of Ibadan and the Department of Chemical Sciences, Redeemer’s University for provision of Laboratory space and scientific equipment for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. I. Olu-Owolabi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unuabonah, E.I., Olu-Owolabi, B.I. & Adebowale, K.O. Competitive adsorption of metal ions onto goethite–humic acid-modified kaolinite clay. Int. J. Environ. Sci. Technol. 13, 1043–1054 (2016). https://doi.org/10.1007/s13762-016-0938-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-016-0938-y

Keywords

Navigation