Skip to main content

Advertisement

Log in

Determination of aerosol deliquescence and crystallization relative humidity for energy saving in free-cooled data centers

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

This study examines an innovative application of the aerosol deliquescence and crystallization determination, for corrosion prevention and energy-saving strategies in free-cooled data centers. Aerosol deliquescence and crystallization were investigated by combining standardized aerosol sampling techniques (i.e. EN-14907) with the assessment of the electrical effects of aerosol, while varying relative humidity within a specially designed aerosol exposure chamber. Aerosol samples collected in the Po Valley (Northern Italy) were analysed; a clearly defined hysteresis cycle (deliquescence and crystallization at 60.5 ± 0.8 and 47.9 ± 0.7 % of RH, respectively) was found. Results were applied to a data center designed for the Italian National Oil and Gas Company, making it possible to identify a critical area for direct free cooling at this data center. As a result, aerosol hydration was avoided (thus preventing aerosol from damaging electrical components) and a large amount of energy saved (using free cooling instead of air-conditioning); the potential energy saving achieved in this way was 79 % (compared to the energy consumption of a traditional air-conditioning system): 215 GWh of energy was saved, and 78 fewer kt of equivalent CO2 was emitted per year. Moreover, in order to evaluate whether a real-time estimation of the aerosol hydration state within a data center could be performed, measured deliquescence and crystallization were compared through simulations performed using three different models: two thermodynamic models for deliquescence and a parametric model for crystallization. The results obtained tend to converge in terms of deliquescence, whereas in the case of crystallization, they failed to effectively simulate experimental aerosol behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • ASHRAE (2009) Gaseous and particulate contamination guidelines for data centers. Whitepaper prepared by ASHRAE Technical Committee (TC) 9.9 Mission Critical Facilities, Technology Spaces, and Electronic Equipment. http://www.Eni.com/green-data-center/it_IT/static/pdf/ASHRAE_2.pdf

  • ASHRAE (2011) Gaseous and particulate contamination guidelines for data centers. Whitepaper prepared by ASHRAE Technical Committee (TC) 9.9 Mission Critical Facilities, Technology Spaces, and Electronic Equipment. http://ebookbrowse.com/gdoc.php?id=191780893&url=3ba7e0c6a7c2ae744b9103d45d02e282

  • Bialek J, Dall’Osto M, Vaattovaara P, Decesari S, Laaksonen A, O’Dowd C (2013) Hygroscopic and chemical characterisation of Po Valley aerosol. Atmos Chem Phys Disc 13:3247–3278

    Article  Google Scholar 

  • Carbone C, Decesari S, Mircea M, Giulianelli L, Finessi E, Rinaldi M, Fuzzi S, Marinoni A, Duchi R, Perrino C, Sargolini T, Vardè M, Sprovieri F, Gobbi GP, Angelini F, Facchini MC (2010) Size-resolved aerosol chemical composition over the Italian Peninsula during typical summer and winter conditions. Atmos Environ 44:5269–5278

    Article  CAS  Google Scholar 

  • Choi MY, Chan CK (2002) The effects of organic species on the hygroscopic behaviors of inorganic aerosols. Environ Sci Technol 36:2422–2428

    Article  CAS  Google Scholar 

  • Clegg SL, Brimblecombe P, Wexler AS (1998) Thermodynamic model of the system H+–NH4+–Na+–SO42–NO3–Cl–H2O at 298.15 K. J Phys Chem A 102:2155–2171

    Article  CAS  Google Scholar 

  • Di Nicolantonio W, Cacciari A, Petritoli A, Carnevale C, Pisoni E, Volta ML, Stocchi P, Curci G, Bolzacchini E, Ferrero L, Ananasso C, Tomasi C (2009) MODIS and OMI satellite observations supporting air quality monitoring. Radiat Prot Dosim 137:280–287

    Article  Google Scholar 

  • Dogrouz MB, Nagulapally MK (2009) Effects of trace layers and Joule heating on the temperature distribution of printed circuit boards: a computational study. J Thermal Sci Eng Appl 1(2). doi:10.1115/1.4000286

  • Ferrero L, Bolzacchini E, Petraccone S, Perrone MG, Sangiorgi G, Lo Porto C, Lazzati Z, Ferrini B (2007) Vertical profiles of particulate matter over Milan during winter 2005/2006. Fresen Environ Bull 16:697–700

    CAS  Google Scholar 

  • Ferrero L, Perrone MG, Petraccone S, Sangiorgi G, Ferrini BS, Lo Porto C, Lazzati Z, Cocchi D, Bruno F, Greco F, Riccio A, Bolzacchini E (2010) Vertically-resolved particle size distribution within and above the mixing layer over the Milan metropolitan area. Atmos Chem Phys 10:3915–3932

    Article  CAS  Google Scholar 

  • Ferrero L, Mocnik G, Ferrini BS, Perrone MG, Sangiorgi G, Bolzacchini E (2011a) Vertical profiles of aerosol absorption coefficient from micro-Aethalometer data and Mie calculation over Milan. Sci Total Environ 409:2824–2837

    Article  CAS  Google Scholar 

  • Ferrero L, Riccio A, Perrone MG, Sangiorgi G, Ferrini BS, Bolzacchini E (2011b) Mixing height determination by tethered balloon-based particle soundings and modeling simulations. Atmos Res 102:145–156

    Article  CAS  Google Scholar 

  • Ferrero L, Cappelletti D, Moroni B, Sangiorgi G, Perrone MG, Crocchianti S, Bolzacchini E (2012) Wintertime aerosol dynamics and chemical composition across the mixing layer over basin valleys. Atmos Environ 56:143–153

    Article  CAS  Google Scholar 

  • Ferrero L, Sangiorgi G, Ferrini BS, Perrone MG, Moscatelli M, D’Angelo L, Rovelli G, Ariatta A, Truccolo R, Bolzacchini E (2013) Aerosol corrosion prevention and energy-saving strategies in the design of green data centers. Environ Sci Technol 47(8):3856–3864

    Article  CAS  Google Scholar 

  • Ferrero L, Castelli M, Ferrini BS, Moscatelli M, Perrone MG,  Sangiorgi G, Rovelli G, D’Angelo L, Moroni B, Scardazza F, Mocnik G, Bolzacchini E, Petitta M, Cappelletti D (2014) Impact of black carbon aerosol over Italian basin valleys: high-resolution measurements along vertical profiles, radiative forcing and heating rate. Atmos Chem Phys 14:9641–9664

  • Fountoukis C, Nenes A (2007) ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–NH4 +–Na+–SO4 2−–NO3 –Cl–H2O aerosols. Atmos Chem Phys 7:4639–4659

    Article  CAS  Google Scholar 

  • Greenberg S, Mills E, Tschudi W, Rumsey P, Myatt B (2006) Best practices for data centers. Results from benchmarking 22 data centers. In: Proceedings of the 2006 ACEEE summer study on energy efficiency in buildings, Pacific Grove, CA, 13−18 Aug 2006. http://www.eceee.org/conference_proceedings/ACEEE_buildings/2006/Panel_3/p3_7/paper

  • Hong T, Koo C, Kim H (2012) A decision support model for improving a multi-family housing complex based on CO2 emission from electricity consumption. J Environ Manag 112:67–78

    Article  Google Scholar 

  • Hoschen J, Kopelman R (1976) Percolation and cluster distribution. I. Cluster multiple labelling techniques and critical concentration algorithm. Phys Rev B 14:3438–3445

    Article  Google Scholar 

  • Hoschen J, Kopelman R, Monberg EM (1978) Percolation and cluster distribution. II. Layers, variable-range interactions and exciton cluster model. J Stat Phys 19:219–242

    Article  Google Scholar 

  • Jayne JT, Leard DC, Zhang X, Davidovits P, Smith KA, Kolb CE, Worsnop DR (2000) Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci Technol 33(1–2):49–70

    Article  CAS  Google Scholar 

  • Koomey JG (2008) Worldwide electricity used in data centers. Environ Res Lett 3:1–8

    Article  Google Scholar 

  • Lau NT, Chan CK, Chan I, Fang M (2008) A microscopic study of the effects of particle size and composition of atmospheric aerosols on the corrosion of mild steel. Corros Sci 50:2927–2933

    Article  CAS  Google Scholar 

  • Leiva MA, Toro R, Morales RGE, Ríos MA, Gonzáles MR (2013) A study of water-soluble inorganic ions in size-segregated aerosols in atmospheric pollution episode. Int. J. Environ. Sci. Technol. doi:10.1007/s13762-013-0221-4

  • Litvak A, Gadgil AJ, Fisk WJ (2000) Hygroscopic fine mode particle deposition on electronic circuits and resulting degradation of circuit performance, an experimental study. Indoor Air 10:47–56

    Article  CAS  Google Scholar 

  • Lobnig RE, Frankenthal RP, Siconolfi DJ, Sinclair JD, Stratmann M (1994) Mechanism of atmospheric corrosion of copper in the presence of submicron ammonium sulfate particles at 300 and 373 K. J Electrochem Soc 141(11):2935–2941

    Article  CAS  Google Scholar 

  • Martin ST (2000) Phase transitions of aqueous atmospheric particles. Chem Rev 100:3403–3454

    Article  CAS  Google Scholar 

  • Martin ST, Schlenker JC, Malinowski A, Hung HM (2003) Crystallization of atmospheric sulfate-nitrate-ammonium particles. Geophys Res Lett 30(21). doi:10.1029/2003GL017930

  • Nazaroff WW (2004) Indoor particle dynamics. Indoor Air 14(7):175–183

    Article  Google Scholar 

  • Onasch TB, Siefert RL, Brooks SD, Prenni AJ, Murray B, Wilson MA, Tolbert MA (1999) Infrared spectroscopic study of the deliquescence and efflorescence of ammonium sulfate aerosol as a function of temperature. J Geophys Res 104:21317–21326

    Article  CAS  Google Scholar 

  • Otagiri M, Kutami M (2010) Trends of energy saving in data centers and Fujitsu group’s approach. Fujitsu Sci Tech J 46(4):352–358

    Google Scholar 

  • Owoade OK, Olise FS, Obioh IB, Olaniyi HB, Bolzacchini E, Ferrero L, Perrone G (2006) PM10 sampler deposited air particulates: ascertaining uniformity of sample on filter through rotated exposure to radiation. Nucl Instrum Meth A 564(1):315–318

    Article  CAS  Google Scholar 

  • Parolini L, Sinopoli B, Krogh BH, Wang Z (2012) A cyber-physical systems approach to data center modeling and control for energy efficiency. Proc IEEE 100(1):254–268

    Article  Google Scholar 

  • Pathak RK, Louie PKK, Chan CK (2004) Characteristics of aerosol acidity in Hong Kong. Atmos Environ 38:2965–2974

    Article  CAS  Google Scholar 

  • Perrone MG, Gualtieri M, Ferrero L, Lo Porto C, Udisti R, Bolzacchini E, Camatini M (2010) Seasonal variations in chemical composition and in vitro biological effects of fine PM from Milan. Chemosphere 78(11):1368–1377

    Article  CAS  Google Scholar 

  • Perrone MG, Larsen B, Ferrero L, Sangiorgi G, De Gennaro G, Udisti R, Zangrando R, Gambaro A, Bolzacchini E (2012) Sources of high PM2.5 concentrations in Milan, Northern Italy, molecular marker data and CMB modelling. Sci Total Environ 414:343–355

    Article  CAS  Google Scholar 

  • Perrone MG, Gualtieri M, Consonni V, Ferrero L, Sangiorgi G, Longhin E, Ballabio D, Bolzacchini E, Camatini M (2013) Particle size, chemical composition, seasons of the year and urban, rural or remote site origins as determinants of biological effects of particulate matter on pulmonary cells. Environ Pollut 176:215–227

    Article  CAS  Google Scholar 

  • Potukuchi S, Wexler A (1995) Identifying solid-aqueous-phase transitions in atmospheric aerosols. II. Acidic solutions. Atmos Environ 29(22):3357–3364

    Article  CAS  Google Scholar 

  • Randriamiarisoa H, Chazette P, Couvert P, Sanak J, Mégie G (2006) Relative humidity impact on aerosol parameters in a Paris suburban area. Atmos Chem Phys 6:1389–1407

    Article  CAS  Google Scholar 

  • Rodriguez S, Van Dingenen R, Putaud JP, Dell’Acqua A, Pey J, Querol X, Alastuey A, Chenery S, Ho KF, Harrison R, Tardivo R, Scarnato B, Gemelli V (2007) A study on the relationship between mass concentration, chemistry and number size distribution of urban fine aerosol in Milan, Barcelona and London. Atmos Chem Phys 7:2217–2232

    Article  CAS  Google Scholar 

  • Rood MJ, Covert DS, Larson TV (1987) Hygroscopic properties of atmospheric aerosol in Riverside, California. Tellus B 39(4):383–397

    Article  Google Scholar 

  • Sangiorgi G, Ferrero L, Perrone MG, Bolzacchini E, Duane M, Larsen BR (2011) Vertical distribution of hydrocarbons in the low troposphere below and above the mixing height: tethered balloon measurements in Milan, Italy. Environ Pollut 159(12):3545–3552

    Article  CAS  Google Scholar 

  • Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics—from air pollution to climate change. Wiley, New Jersey

    Google Scholar 

  • Shankaran GV, Dogruoz MB, deAraujo D (2010) Orthotropic thermal conductivity and joule heating effects on the temperature distribution of printed circuit boards. In: Proceeding of the 12th IEEE intersociety conference on thermal and thermomechanical phenomena in electronic systems, vol 1, pp 1–9

  • Shehabi A (2009) Energy demands and efficiency strategies in data center buildings. PhD Dissertation, Civil and Environmental Engineering, University of California, Berkeley

  • Shehabi A, Horvath A, Tschudi W, Gadgil AJ, Nazaroff WW (2008) Particle concentrations in data centers. Atmos Environ 42:5978–5990

    Article  CAS  Google Scholar 

  • Shehabi A, Ganguly S, Gundel LA, Horvath A, Kirchstetter TW, Lunden MM, Tschudi W, Gadgil AJ, Nazaroff WW (2010) Can combining economizers with improved filtration save energy and protect equipment in data centers? Build Environ 45:718–726

    Article  Google Scholar 

  • Shields HC, Weschler CJ (1998) Are indoor air pollutants threatening the reliability of your electronic equipment? Heat Pip Air Cond 70(5):46–54

    Google Scholar 

  • Song B, Azarian MH, Pecht MG (2013) Effect of temperature and relative humidity on the impedance degradation of dust-contaminated electronics. J Electrochem Soc 160:C97–C105

    Article  CAS  Google Scholar 

  • Svenningsson IB, Hansson HC, Wiedensohler A, Ogren JA, Noone KJ, Hallberg A (1992) Hygroscopic growth of aerosol particles in the Po Valley. Tellus B 44:556–569

    Article  Google Scholar 

  • Syed S (2006) Atmospheric corrosion of materials. Emir J Eng Res 11:1–24

    Google Scholar 

  • Tencer M (2008) Deposition of aerosol (‘‘hygroscopic dust”) on electronics—mechanism and risk. Microelectron Reliab 48:584–593

    Article  Google Scholar 

  • Tschudi W, Xu T, Sartor D, Nordman B, Koomey J, Sezgen O (2004) Energy efficient data centers. Report LBNL-54163, 2004, Lawrence Berkeley National Laboratory, Berkeley, CA. http://www.osti.gov/bridge/servlets/purl/841561-aO7Lg9/native/841561.pdf

  • Wan Y, Yan C, Shi Z, Qu Q, Cao C (2002) Atmospheric corrosion of A3 steel with deposited ammonium sulfate. Acta Physico-Chimica 18(2):156–160

    CAS  Google Scholar 

  • Weschler CJ (1991) Predictions of benefits and costs derived from improving indoor air quality in telephone switching offices. Indoor Air 1:65–78

    Article  Google Scholar 

  • Yang L, Pabalan RT, Juckett MR (2006) Deliquescence relative humidity measurements using an electrical conductivity method. J Solut Chem 35:583–604

    Article  CAS  Google Scholar 

  • Zaveri RA, Easter RC, Peters LK (2005) A computationally efficient multicomponent equilibrium solver for aerosols (MESA). J Geophys Res 110:D24203. doi:10.1029/2004JD005618

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the SINOPIAE project (Grant Number: E47I11000520004) funded by the Italian Lombardy Region within the framework of the European Fund for Regional Development FESR 2007–2013. The authors would like to thank the two anonymous reviewers who helped improve the quality of the paper. Finally, this work is dedicated to the memory of Luigi Casati and Maria Luisa Janes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Ferrero.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 492 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrero, L., D’Angelo, L., Rovelli, G. et al. Determination of aerosol deliquescence and crystallization relative humidity for energy saving in free-cooled data centers. Int. J. Environ. Sci. Technol. 12, 2777–2790 (2015). https://doi.org/10.1007/s13762-014-0680-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0680-2

Keywords

Navigation