Skip to main content
Log in

Production and applications of crude polyhydroxyalkanoate-containing bioplastic from the organic fraction of municipal solid waste

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

A considerable economic and environmental need exists for the further development of degradable plastic polyhydroxyalkanoates (PHAs), which are produced by bacteria. However, the production cost of this bioplastic, manufactured using conventional technologies, is several times higher than that of petrochemical-based plastics. This is a major obstacle for the industrial production of PHA bioplastic for non-medical use. The aim of this review is to evaluate suitable methods for the significant reduction in bioplastic production costs. The study findings are as follows: (1) The organic fraction of municipal solid waste can be used as a raw material through acidogenic fermentation; (2) non-aseptic cultivation using mixed bacterial culture can significantly reduce the production cost; (3) biotechnology of bacterial cultivation should ensure selection of PHA-accumulating strains; (4) applications of PHA-containing material in both construction industry and agriculture do not require expensive extraction of PHAs from bacterial biomass. The implementation of the above findings in the current manufacturing process of PHA-containing bioplastic would significantly reduce production costs, thereby rendering PHA-containing bioplastic an economically viable and environmentally friendly alternative to petrochemical-based plastics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abd-El-Haleem D, Amara A, Zaki S, Abulhamd A, Abulreesh G (2007) Biosynthesis of biodegradable polyhydroxyalkanotes biopolymers in genetically modified yeasts. Int J Environ Sci Technol 4:513–520

    Article  CAS  Google Scholar 

  • Abouelenien F, Fujiwara W, Namba Y, Kosseva M, Nishio N, Nakashimada Y (2010) Improved methane fermentation of chicken manure via ammonia removal by biogas recycle. Bioresour Technol 101:6368–6373

    Article  CAS  Google Scholar 

  • Barlaz MA, Staley BF, De Los Reyes FL III (2010) Anaerobic biodegradation of solid waste. In: Mitchell R, Gu JD (eds) Environmental microbiology, 2nd edn. Wiley, Hoboken, pp 281–299

    Chapter  Google Scholar 

  • Ben Rebah F, Yan S, Filali-Meknassi Y, Tyagi RD, Surampalli RY (2004) Bacterial production of bioplastics. In: Surampalli RY, Tyagi RD (eds) Advances in water and wastewater treatment. ASCE Publications, pp 42–71

  • Bolzonella D, Fatone F, Pavan P, Cecchi F (2005) Anaerobic fermentation of organic municipal solid wastes for the production of soluble organic compounds. Ind Eng Chem Res 44:3412–3418

    Article  CAS  Google Scholar 

  • Braun R, Drosg B, Bochmann G, Weiss S, Kirchmayr R (2010) Recent developments in bio-energy recovery through fermentation. In: Insam H, Franke-Whittle I, Goberna M (eds) Microbes at work, from waste to resources. Springer, Berlin, pp 35–58

    Chapter  Google Scholar 

  • Buathong S, Chiemchaisri C, Chiemchaisri W, Hiroyasu Satoh H (2012) Polyhydroxyalkanoate (PHA) production potential of activated sludge from food industrial wastewater treatment process. Int J Environ Eng 4:210–219

    Article  Google Scholar 

  • Castilho LR, Mitchell DA, Freire DMG (2009) Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresour Technol 100:5996–6009

    Article  CAS  Google Scholar 

  • Cesaro A, Belgiorno V, Naddeo V (2011) Comparative technology assessment of anaerobic digestion of organic fraction of MSW. In: Brebbia CA (ed) The sustainable world. Wessex Institute of Technology, Ashurst, pp 355–366

    Google Scholar 

  • Chen BK, Lo SH (2012) Thermally stable biopolymer for tissue scaffolds. Plastic research online. Soc Plast Eng. doi:10.2417/spepro.004171, http://www.4spepro.org

  • Chen GQ, Wu Q, Wang Y, Zheng Z (2005) Application of microbial polyesters-polyhydroxyalkanoates as tissue engineering materials. Key Eng Mater 288–289:437–440

    Article  Google Scholar 

  • Choi D, Chipman D, Bents S, Brown R (2010) A techno-economic analysis of polyhydroxyalkanoates and hydrogen production from syngas fermentation of gasified biomass. Appl Biochem Biotechnol 160:1032–1046

    Article  CAS  Google Scholar 

  • Dobrenko S, Joarder M (2011) Business aspects of municipal solid waste and technology of hydroseparation in the USA. J Bus Glob 2:25–38

    Google Scholar 

  • Dobrenko S, Maksimov V, Pryakhin V, Lazarenko M (2012) Comparative analysis of aero- and hydroseparation of municipal solid waste. In: Proceedings international conference. The role of water reclamation in the innovative development of agriculture, Moscow, pp 22–32

  • Du C, Sabirova J, Soetaert W, Lin SKC (2012) Polyhydroxyalkanoates production from low-cost sustainable raw materials. Curr Chem Biol 6:14–25

    CAS  Google Scholar 

  • Giner JME, Boronat T, Balart R, Fages E, Moriana R (2012) Antioxidant effects of natural compounds on green composite materials. Plastic research online. Soc Plast Eng. doi:10.2417/spepro.004379, http://www.4spepro.org

  • Gray NF (2004) Biology of wastewater treatment. Imperial College Press, London

    Google Scholar 

  • Gumel AM, Annuar MSM, Heidelberg T (2012) Biosynthesis and characterization of polyhydroxyalkanoates copolymers produced by Pseudomonas putida bet001 isolated from palm oil mill effluent. PLoS ONE 7:e45214. doi:10.1371/journal.pone.0045214

    Article  CAS  Google Scholar 

  • Ivanov V (2010) Environmental microbiology for engineers. CRC Press, Boca Raton

    Google Scholar 

  • Ivanov V, Chu J (2008) Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev Environ Sci Biotechnol 7:139–153

    Article  CAS  Google Scholar 

  • Ivanov VN, Stabnikova EV, Stabnikov VP, Kim IS, Zubair A (2002) Effects of iron compounds on the treatment of fat-containing wastewaters. Appl Biochem Microbiol 38:255–258

    Article  CAS  Google Scholar 

  • Jacquel N, Lo CW, Wei YH, Wu HS, Wang SS (2008) Isolation and purification of bacterial poly(3-hydroxyalkanoates). Biochem Eng J 39:15–27

    Article  CAS  Google Scholar 

  • Kelleher M (2007) Anaerobic digestion outlook for MSW streams. BioCycle 48:51–55

    CAS  Google Scholar 

  • Keshavarz T, Roy I (2010) Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol 13:321–326

    Article  CAS  Google Scholar 

  • Lei X, Sugiura N, Feng C, Maekawa T (2007) Pretreatment of anaerobic digestion effluent with ammonia stripping and biogas purification. J Hazard Mater 145:391–397

    Article  CAS  Google Scholar 

  • Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6:1–8

    Article  CAS  Google Scholar 

  • Lu Y (2007) Advance on the production of polyhydroxyalkanoates by mixed cultures. Front Biol China 2:1673–3509

    Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  • Macias-Corral M, Samani Z, Hanson A (2008) Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure. Bioresour Technol 99:8288–8293

    Article  CAS  Google Scholar 

  • Madigan MT, Martinko JM, Stahl D, David P, Clark DP (2012) Brock biology of microorganisms, 13th edn. Pearson, London

    Google Scholar 

  • Maness PC, Weaver PF (1994) Production of poly-3-hydroxyalkanoates from CO and H2 by a novel photosynthetic bacterium. Appl Biochem Biotechnol 45(46):395–406

    Article  Google Scholar 

  • Md Din MF, Ponraj M, van Loosdrecht MCM, Ujang Z, Chelliapan S, Zambare V (2013) The utilization of palm oil mill effluent for polyhydroxyalkanoate production and nutrient removal using statistical design. Int J Environ Sci Techno. doi:10.1007/s13762-013-0253-9

    Google Scholar 

  • Mergaert J, Anderson C, Wouters A, Swings J, Kerster K (1992) Biodegradation of polyhydroxyalkanoates. FEMS Microbiol Rev 103:317–322

    Article  CAS  Google Scholar 

  • Mokhtarani N, Ganjidoust H, Farahani EV (2012) Effect of process variables on the production of polyhydroxyalkanoates by activated sludge. Iran J Environ Health Sci Eng. doi:10.1186/1735-2746-9-6

    Google Scholar 

  • Mudhoo A, Kumar S (2013) Effects of heavy metals as stress factors on anaerobic digestion processes and biogas production from biomass. Int J Environ Sci Technol 10:1383–1398. doi:10.1007/s13762-012-0167-y

    Article  CAS  Google Scholar 

  • O’Flaherty V, Collins G, Mahony T (2010) Anaerobic digestion of agricultural residues. In: Mitchell R, Gu JD (eds) Environmental microbiology, 2nd edn. Wiley, Hoboken, pp 259–279

    Chapter  Google Scholar 

  • Palmeri R, Pappalardo F, Fragala M, Tomasello M, Damigella A, Catara AF (2012) Polyhydroxyalkanoates (PHAs) production through conversion of glycerol by selected strains of Pseudomonas mediterranea and Pseudomonas corrugata. Chem Engrg Transactions 27:121–126. doi:10.3303/CET1227021

    Google Scholar 

  • Plank J (2004) Application of biopolymers and other biotechnological products in building materials. Appl Microbiol Biotechnol 66:1–9

    Article  CAS  Google Scholar 

  • Preethi R, Sasikala P, Aravind J (2012) Microbial production of polyhydroxyalkanoate (PHA) utilizing fruit waste as a substrate. Res Biotech 3:61–69

    Google Scholar 

  • Rahman MO, Hussain A, Basri H (2013) A critical review on waste paper sorting techniques. Int J Environ Sci Technol. doi:10.1007/s13763-013-0223-3

    Google Scholar 

  • Ramesh BNG, Anitha N, Rani HKR (2010) Recent trends in biodegradable products from biopolymers. Adv Biotech 9:30–34

    Google Scholar 

  • Salehizadeh H, Van Loosdrecht MCM (2004) Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnol Adv 22:261–279

    Article  CAS  Google Scholar 

  • Sandhya M, Aravind J, Kanmani P (2013) Production of polyhydroxyalkanoates from Ralstonia eutropha using paddy straw as cheap substrate. Int J Environ Sci Technol 10:47–54

    Article  CAS  Google Scholar 

  • Selvakumar K, Srinivasan G, Baskar V, Madhan R (2011) Production and isolation of polyhydroxyalkanoates from Haloarcula marismortui MTCC 1596 using cost effective osmotic lysis methodology. Eur J Exp Biol 1:180–187

    CAS  Google Scholar 

  • Serafim LS, Lemos PC, Albuquerque MGE, Reis MAM (2008) Strategies for PHA production by mixed cultures and renewable waste materials. Appl Microbiol Biotechnol 81:615–628

    Article  CAS  Google Scholar 

  • Stabnikov VP, Ivanov VN (2006) The effect of iron hydroxide concentrations on the anaerobic fermentation of sulfate-containing model wastewater. Appl Biochem Microbiol 42:284–288

    Article  CAS  Google Scholar 

  • Strauber H, Schroder M, Kleinsteuber S (2012) Metabolic and microbial community dynamics during the hydrolytic and acidogenic fermentation in a leach-bed process. Energy Sustain Soc 2:13

    Article  Google Scholar 

  • Sudesh K (2013) Polyhydroxyalkanoates from palm oil: biodegradable plastics. Springer, Heidelberg, p 130

    Book  Google Scholar 

  • Sudesh K, Abe H (2010) Practical guide to microbial polyhydroxyalkanoates. Smithers Rapra Technology, Shrewsbury, p 160

    Google Scholar 

  • US EPA (2011) Municipal solid waste generation, recycling, and disposal in the United States: Facts and figures for 2010. http://www.epa.gov/epawaste/nonhaz/municipal/pubs/2010_MSW_Tables_and_Figures_508

  • Van Hee P, Elumbaring CMRA, Van der Lans RGJM, Van der Wielen LAM (2006) Selective recovery of polyhydroxyalkanoate inclusion bodies from fermentation broth by dissolved-air flotation. J Coll Interface Sci 297:595–606

    Article  Google Scholar 

  • Verbeek CJR, van den Berg LE (2009) Extrusion processing and properties of protein-based thermoplastics. Macromol Mater Eng. doi:10.1002/mame.200900167

    Google Scholar 

  • Vishnuvardhan RS, Thirumala M (2012) Isolation of polyhydroxyalkanoates (PHA) producing bacteria from contaminated soils. Int J Environ Biol 2:104–107

    Google Scholar 

  • Volova TG (2004) Polyhydroxyalkanoates—plastic materials of the 21st century. Nova Publishers, Hauppauge

    Google Scholar 

  • Wang YS, Odle W, Eleazer WE, Barlaz MA (1997) Methane potential of food waste and anaerobic toxicity of leachate produced during food waste decomposition. Waste Manag Res 15:149–167

    Article  CAS  Google Scholar 

  • Yee LN, Mumtaz T, Mohammadi M, Phang LY, Ando Y, Raha AR, Sudesh K, Ariffin H, Hassan MA, Zakaria MR (2012) Polyhydroxyalkanoate synthesis by recombinant Escherichia coli JM109 expressing PHA biosynthesis genes from Comamonas sp. EB172. Microb Biochem Technol 4:103–110

    Article  CAS  Google Scholar 

  • Yu J (2006) Production of biodegradable thermoplastic materials from organic wastes. US Patent 7,141,400. November 28, 2006

Download references

Acknowledgments

The studies presented in this paper were supported by Nanyang Technological University, Singapore; National University of Food Technologies, Kiev, Ukraine; King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Iowa State University of Science and Technology, Ames, USA; and ASA Institute, Brooklyn, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ivanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, V., Stabnikov, V., Ahmed, Z. et al. Production and applications of crude polyhydroxyalkanoate-containing bioplastic from the organic fraction of municipal solid waste. Int. J. Environ. Sci. Technol. 12, 725–738 (2015). https://doi.org/10.1007/s13762-014-0505-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0505-3

Keywords

Navigation