Skip to main content

Advertisement

Log in

CYP2C9 (*2&*3) and CYP2C19 (*2&*3) polymorphisms among children with nonlesional epilepsy: a single-center study

  • Original article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

Cytochrome (CYP) P450 enzymes are responsible for metabolism of antiepileptic drugs (AEDs), and encoded by highly polymorphic genes. A case–control study was conducted in Mansoura University Children’s Hospital, Egypt including 100 children with nonlesional epilepsy (50 AEDs responders and 50 resistant cases) and 50 healthy controls. All participants were investigated for frequencies of CYP2C9 (*2&*3) and CYP2C19 (*2&*3) genotypes and alleles using polymerase chain reaction. The current study reported higher frequencies of CYP2C9*2 (CT) genotype and (T) allele among responsive and resistant groups than controls (P < 0.001). Frequency of (TT) genotype was higher in resistant than responsive group (P = 0.02, OR 12, 95% CI 1.2–122.3). No significant differences were detected between responsive and resistant groups regarding CYP2C9*2 alleles (P = 0.2). CYP2C9*3 (AC) genotype was more frequent in controls than other groups (P < 0.001). No significant differences were detected between responsive and resistant groups regarding neither CYP2C9*3 genotypes nor alleles (P = 0.11 and 0.2, respectively). CYP2C19*2&*3 (GA) genotypes and (A) alleles were more frequent in responsive and resistant groups than controls (P < 0.001). No significant differences were detected between responsive and resistant groups regarding neither CYP2C19*2&*3 genotypes nor alleles (P = 0.21 and 0.89 for CYP2C19*2; P = 1 and 0.77 for CYP2C19*3). The CYP2C9*2 (TT) genotype, earlier seizure onset and higher seizures frequency were associated with higher risks of refractory epilepsy. We concluded that heterozygous genotypes of CYP2C9*2 and CYP2C19 (*2&*3) and mutant alleles of studied variants were more frequent among children with nonlesional epilepsy. CYP2C9*2 (TT) genotype increased refractory epilepsy susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The datasets generated during the current study are available in the Mendeley Data: http://dx.doi.org/10.17632/z8432k2bg6.1.

References

  1. Adelöw C, Andell E, Amark P, Andersson T, Hellebro E, Ahlbom A, Tomson T (2009) Newly diagnosed single unprovoked seizures and epilepsy in Stockholm, Sweden: first report from the Stockholm Incidence Registry of Epilepsy (SIRE). Epilepsia 50(5):1094–1101

    Article  Google Scholar 

  2. Weber YG, Biskup S, Helbig KL, Von Spiczak S, Lerche H (2017) The role of genetic testing in epilepsy diagnosis and management. Expert Rev Mol Diagn 17(8):739–750

    Article  CAS  Google Scholar 

  3. Silvado CE, Terra VC, Twardowschy CA (2018) CYP2C9 polymorphisms in epilepsy: influence on phenytoin treatment. Pharmgenom Pers Med 11:51–58

    CAS  Google Scholar 

  4. Kousar S, Wafai ZA, Wani MA, Jan TR, Andrabi KI (2015) Clinical relevance of genetic polymorphism in CYP2C9 gene to pharmacodynamics and pharmacokinetics of phenytoin in epileptic patients: validatory pharmacogenomic approach to pharmacovigilance. Int J Clin Pharmacol Ther 53(7):504–516

    Article  Google Scholar 

  5. Johannessen Landmark C, Patsalos PN (2010) Drug interactions involving the new second-and third-generation antiepileptic drugs. Expert Rev Neurother 10(1):119–140

    Article  CAS  Google Scholar 

  6. López-García MA, Feria-Romero IA, Serrano H, Rayo-Mares D, Fagiolino P, Vázquez M, Escamilla-Núñez C, Grijalva I, Escalante-Santiago D, Orozco-Suarez S (2017) Influence of genetic variants of CYP2D6, CYP2C9, CYP2C19 and CYP3A4 on antiepileptic drug metabolism in pediatric patients with refractory epilepsy. Pharmacol Rep 69(3):504–511

    Article  Google Scholar 

  7. Jureidini ID, Chamseddine N, Keleshian S, Naoufal R, Zahed L, Hakime N (2011) Prevalence of CYP2C19 polymorphisms in the Lebanese population. Mol Biol Rep 38(8):5449–5452

    Article  Google Scholar 

  8. Ingelman-Sundberg M (2004) Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. Naunyn Schmiedebergs Arch Pharmacol 369(1):89–104

    Article  CAS  Google Scholar 

  9. Dai DP, Xu RA, Hu LM, Wang SH, Geng PW, Yang JF, Yang LP, Qian JC, Wang ZS, Zhu GH, Zhang XH, Ge RS, Hu GX, Cai JP (2014) CYP2C9 polymorphism analysis in Han Chinese populations: building the largest allele frequency database. Pharmacogenom J 14(1):85–92

    Article  CAS  Google Scholar 

  10. Soga Y, Nishimura F, Ohtsuka Y, Araki H, Iwamoto Y, Naruishi H, Shiomi N, Kobayashi Y, Takashiba S, Shimizu K, Gomita Y, Oka E (2004) CYP2C polymorphisms, phenytoin metabolism and gingival overgrowth in epileptic subjects. Life Sci 74(7):827–834

    Article  CAS  Google Scholar 

  11. Stubbins MJ, Harries LW, Smith G, Tarbit MH, Wolf CR (1996) Genetic analysis of the human cytochrome P450 CYP2C9 locus. Pharmacogenetics 6(5):429–439

    Article  CAS  Google Scholar 

  12. Yasar Ü, Eliasson E, Dahl ML, Johansson I, Ingelman-Sundberg M, Sjöqvist F (1999) Validation of methods for CYP2C9 genotyping: frequencies of mutant alleles in a Swedish population. Biochem Biophys Res Commun 254(3):628–631

    Article  CAS  Google Scholar 

  13. Rosemary J, Surendiran A, Rajan S, Shashindran CH, Adithan C (2006) Influence of the CYP2CP & CYP2C19 polymorphisms on phenytoin hydroxylation in healthy individuals from south India. Indian J Med Res 123(5):665–670

    CAS  PubMed  Google Scholar 

  14. De Morais SM, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Goldstein JA (1994) The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 269(22):15419–15422

    Article  Google Scholar 

  15. Hamdy SI, Hiratsuka M, Narahara K, El-Enany M, Moursi N, Ahmed MS, Mizugaki M (2002) Allele and genotype frequencies of polymorphic cytochromes P450 (CYP2C9, CYP2C19, CYP2E1) and dihydropyrimidine dehydrogenase (DPYD) in the Egyptian population. Br J Clin Pharmacol 53(6):596–603

    Article  CAS  Google Scholar 

  16. Sullivan-Klose TH, Ghanayem BI, Bell DA, Zhang ZY, Kaminsky LS, Shenfield GM, Miners JO, Birkett DJ, Goldstein JA (1996) The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 6(4):341–349

    Article  CAS  Google Scholar 

  17. Fisher RS, Cross JH, French JA, Higurashi N, Hirsch E, Jansen FE, Lagae L, Moshé SL, Peltola J, Roulet Perez E, Scheffer IE, Zuberi SM (2017) Operational classification of seizure types by the International League Against Epilepsy: position paper of the ILAE commission for classification and terminology. Epilepsia 58(4):522–530

    Article  Google Scholar 

  18. Scheffer IE, Berkovic S, Capovilla G, Connolly MB, French J, Guilhoto L, Hirsch E, Jain S, Mathern GW, Moshé SL, Nordli DR, Perucca E, Tomson T, Wiebe S, Zhang YH, Zuberi SM (2017) ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58(4):512–521

    Article  Google Scholar 

  19. Siddiqui A, Kerb R, Weale ME, Brinkmann U, Smith A, Goldstein DB, Wood NW, Sisodiya SM (2003) Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1. N Engl J Med 348(15):1442–1448

    Article  CAS  Google Scholar 

  20. Kumari R, Lakhan R, Garg RK, Kalita J, Misra UK, Mittal B (2011) Pharmacogenomic association study on the role of drug metabolizing, drug transporters and drug target gene polymorphisms in drug-resistant epilepsy in a north Indian population. Indian J Hum Genet 17(Suppl 1):S32–S40

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ye S, Dhillon S, Ke X, Collins AR, Day INM (2001) An efficient procedure for genotyping single nucleotide polymorphisms. Nucleic Acids Res 29(17):E88

    Article  CAS  Google Scholar 

  22. Allabi AC, Gala JL, Desager JP, Heusterspreute M, Horsmans Y (2003) Genetic polymorphisms of CYP2C9 and CYP2C19 in the Beninese and Belgian populations. Br J Clin Pharmac 56(6):653–657

    Article  CAS  Google Scholar 

  23. Kesavan R, Narayan SK, Adithan C (2010) Influence of CYP2C9 and CYP2C19 genetic polymorphisms on phenytoin-induced neurological toxicity in Indian epileptic patients. Eur J Clin Pharmacol 66(7):689–696

    Article  CAS  Google Scholar 

  24. Nakamoto K, Kidd JR, Jenison RD, Klaassen CD, Wan YJ, Kidd KK, Zhong XB (2007) Genotyping and haplotyping of CYP2C19 functional alleles on thin-film biosensor chips. Pharmacogenet Genom 17(2):103–114

    Article  CAS  Google Scholar 

  25. Haas DW, Smeaton LM, Shafer RW, Robbins GK, Morse GD, Labbe L, Wilkinson GR, Clifford DB, D’Aquila RT, De Gruttola V, Pollard RB, Merigan TC, Hirsch MS, George AL Jr, Donahue JP, Kim RB (2005) Pharmacogenetics of long-term responses to antiretroviral regimens containing Efavirenz and/or Nelfinavir: an Adult Aids Clinical Trials Group Study. J Infect Dis 192(11):1931–1942

    Article  CAS  Google Scholar 

  26. Hersberger M, Marti-Jaun J, Rentsch K, Hänseler E (2001) Two single-tube tetra-primer assays to detect the CYP2C19*2 and *3 alleles of S-mephenytoin hydroxylase. Clin Chem 47(4):772–774

    Article  CAS  Google Scholar 

  27. Lakhan R, Kumari R, Singh K, Kalita J, Misra UK, Mittal B (2011) Possible role of CYP2C9 & CYP2C19 single nucleotide polymorphisms in drug refractory epilepsy. Indian J Med Res 134(3):295–301

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chaudhary N, Kabra M, Gulati S, Gupta YK, Pandey RM, Bhatia BD (2016) Frequencies of CYP2C9 polymorphisms in North Indian population and their association with drug levels in children on phenytoin monotherapy. BMC Pediatr 16:66

    Article  Google Scholar 

  29. Seven M, Batar B, Unal S, Yesil G, Yuksel A, Guven M (2014) The effect of genetic polymorphisms of cytochrome P450 CYP2C9, CYP2C19, and CYP2D6 on drug-resistant epilepsy in Turkish children. Mol Diagn Ther 18(2):229–236

    Article  CAS  Google Scholar 

  30. Twardowschy CA, Werneck LC, Scola RH, De Paola L, Silvado CE (2011) CYP2C9 polymorphism in patients with epilepsy: genotypic frequency analyzes andphenytoin adverse reactions correlation. Arq Neuropsiquiatr 69(2A):153–158

    Article  Google Scholar 

  31. Monostory K, Nagy A, Tóth K, Bűdi T, Kiss Á, Déri M, Csukly G (2019) Relevance of CYP2C9 function in valproate therapy. Curr Neuropharmacol 17(1):99–106

    Article  CAS  Google Scholar 

  32. Sánchez MB, Herranz JL, Leno C, Arteaga R, Oterino A, Valdizán EM, Nicolás JM, Adín J, Armijo JA (2010) Genetic factors associated with drug-resistance of epilepsy: relevance of stratification by patient age and aetiology of epilepsy. Seizure 19(2):93–101

    Article  Google Scholar 

  33. Taur SR, Kulkarni NB, Gandhe PP, Thelma BK, Ravat SH, Gogtay NJ, Thatte UM (2014) Association of polymorphisms of CYP2C9, CYP2C19, and ABCB1, and activity of P-glycoprotein with response to anti-epileptic drugs. J Postgrad Med 60(3):265–269

    Article  CAS  Google Scholar 

  34. Ortega-Vázquez A, Dorado P, Fricke-Galindo I, Jung-Cook H, Monroy-Jaramillo N, Martínez-Juárez IE, Familiar-López I, Peñas-Lledó E, LLerena A, López-López M (2016) CYP2C9, CYP2C19, ABCB1 genetic polymorphisms and phenytoin plasma concentrations in Mexican-Mestizo patients with epilepsy. Pharmacogenom J 16(3):286–292

    Article  Google Scholar 

  35. Scordo MG, Aklillu E, Yasar U, Dahl ML, Spina E, Ingelman-Sundberg M (2001) Genetic polymorphism of cytochrome P450 2C9 in a Caucasian and a black African population. Br J Clin Pharmacol 52(4):447–450

    Article  CAS  Google Scholar 

  36. Liao K, Liu Y, Ai CZ, Yu X, Li W (2018) The association between CYP2C9/2C19 polymorphisms and phenytoin maintenance doses in Asian epileptic patients: a systematic review and meta-analysis. Int J Clin Pharmacol Ther 56(7):337–346

    Article  CAS  Google Scholar 

  37. Watanabe M, Iwahashi K, Kugoh T, Suwaki H (1998) The relationship between phenytoin pharmacokinetics and the CYP2C19 genotype in Japanese epileptic patients. Clin Neuropharmacol 21(2):122–126

    CAS  PubMed  Google Scholar 

  38. Tripathi M, Padhy UP, Vibha D, Bhatia R, Padma Srivastava MV, Singh MB, Prasad K, Chandra SP (2011) Predictors of refractory epilepsy in North India: a case–control study. Seizure 20(10):779–783

    Article  Google Scholar 

  39. Fray S, Ben NA, Kchaou M, Chebbi S, Belal S (2015) Predictors factors of refractory epilepsy in childhood. Rev Neurol 171(10):730–735

    Article  CAS  Google Scholar 

  40. Ramos-Lizana J, Aguilera-Lopez P, Aguirre-Rodriguez J, Cassinello-Garcia E (2009) Early prediction of refractory epilepsy in childhood. Seizure 18(6):412–416

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SE and YW. AE performed the molecular work-up. The first draft of the manuscript was written by YW, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yahya Wahba.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Ethical approval

All procedures involving human participants were in accordance with the ethical standards of Institutional Research Board of Medical Faculty of Mansoura University, Egypt (Code No: MS/954) and the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Informed consent

Written informed consents were taken from caregivers of all study participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eltalal, S., El Ayouty, M., El-Said, A. et al. CYP2C9 (*2&*3) and CYP2C19 (*2&*3) polymorphisms among children with nonlesional epilepsy: a single-center study. Acta Neurol Belg 121, 1623–1631 (2021). https://doi.org/10.1007/s13760-020-01442-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-020-01442-y

Keywords

Navigation