Skip to main content

Advertisement

Log in

Nutrigenomic foods

What will we be eating tomorrow?

  • Review
  • Published:
Nutrafoods

Abstract

The growing epidemic of obesity, as well as the alarming rise in associated pathologies, such as diabetes, hypertension and heart disease, reflects a mismatch between modern diet and lifestyle and our thrifty human genome. At the turn of the millennium, application of high-performance technologies associated with genomics to nutritional sciences catalysed the emergence of nutritional genomics, a revolutionary research area that focuses on characterising the bidirectional interactions between genes and nutrition. In particular, nutrigenomics uses the so-called “omics technologies” to define and characterise “dietary signatures” that may reflect the actions of nutrients on the structure and expression of the whole human genome, as well as the final impact on health. In this article, we review how food components interact with our genes and how new insights in the field of nutrigenomics are leading to individualised nutrition, which may be of benefit in disease prevention, as well as in combination with medical treatments. Repercussions for the food chain are presented, such as the development of a new generation of foods of high nutritional value with regard to nutrition and health promotion. In addition, some social and ethical implications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization (2012) World Health Statistics 2012. http://www.who.int/gho/publications/world_health_statistics/2012/en/. Accessed 28 November 2012

    Google Scholar 

  2. Caballero B (2005) A nutrition paradox: underweight and obesity in developing countries. New Engl J Med 352:1514–1516

    Article  CAS  Google Scholar 

  3. Varela-Silva MI, Dickinson F, Wilson H et al (2012) The nutritional dual-burden in developing countries: how is it assessed and what are the health implications? Coll Antropol 36:39–45

    Google Scholar 

  4. Eaton SB (2006) The ancestral human diet: what was it and should it be a paradigm for contemporary nutrition? Proc Nutr Soc 65:1–6

    Article  CAS  Google Scholar 

  5. Rist MJ, Wenzel U, Daniel H (2006) Nutrition and food science go genomic. Trends Biotechnol 24:172–178

    Article  CAS  Google Scholar 

  6. Mutch DM, Wahli W, Williamson G (2005) Nutrigenomics and nutrigenetics: the emerging faces of nutrition. FASEB J 19:1602–1616

    Article  CAS  Google Scholar 

  7. Garcia-Rios A, Perez-Martinez P, Delgado-Lista J et al (2012) Nutrigenetics of the lipoprotein metabolism. Mol Nutr Food Res 56:171–183

    Article  CAS  Google Scholar 

  8. Lovegrove JA, Gitau R (2008) Nutrigenetics and CVD: what does the future hold? Proc Nutr Soc 67:206–213

    Article  CAS  Google Scholar 

  9. Klerk M, Verhoef P, Clarke R et al (2002) MTHFR 677CT polymorphism and risk of coronary heart disease: a metaanalysis. JAMA 288:2023–2031

    Article  CAS  Google Scholar 

  10. Povel CM, Boer JM, Reiling E, Feskens EJ (2011) Genetic variants and the metabolic syndrome: a systematic review. Obes Rev 12:952–967

    Article  CAS  Google Scholar 

  11. Peng S, Zhu Y, Xu F et al (2011) FTO gene polymorphisms and obesity risk: a meta-analysis. BMC Med 9:71

    Article  Google Scholar 

  12. Wang H, Dong S, Xu H et al (2012) Genetic variants in FTO associated with metabolic syndrome: a meta- and genebased analysis. Mol Biol Rep 39:5691–5698

    Article  CAS  Google Scholar 

  13. Phillips CM, Goumidi L, Bertrais S et al (2010) ACC2 gene polymorphisms, metabolic syndrome, and gene-nutrient interactions with dietary fat. J Lipid Res 51:3500–3507

    Article  CAS  Google Scholar 

  14. McGrane MM (2007) Vitamin A regulation of gene expression: molecular mechanism of a prototype gene. J Nutr Biochem 18:497–508

    Article  CAS  Google Scholar 

  15. Ovesna J, Slaby O, Toussaint O et al (2008) High throughput ‘omics’ approaches to assess the effects of phytochemicals in human health studies. Br J Nutr 99E[Suppl 1]:ES127–134

    Google Scholar 

  16. McGowan PO, Meaney MJ, Szyf M (2008) Diet and the epigenetic (re)programming of phenotypic differences in behavior. Brain Res 1237:12–24

    Article  CAS  Google Scholar 

  17. Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2:21–32

    Article  CAS  Google Scholar 

  18. Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    Article  CAS  Google Scholar 

  19. Razin A, Shemer R (1995) DNA methylation in early development. Hum Mol Genet 4 Spec No:1751–1755

    Google Scholar 

  20. Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8:253–262

    Article  CAS  Google Scholar 

  21. Kaati G, Bygren LO, Edvinsson S (2002) Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet 10:682–688

    Article  CAS  Google Scholar 

  22. Jimenez-Chillaron JC, Diaz R, Martinez D et al (2012) The role of nutrition on epigenetic modifications and their implications on health. Biochimie 94:2242–2263

    Article  CAS  Google Scholar 

  23. Bull C, Fenech M (2008) Genome-health nutrigenomics and nutrigenetics: nutritional requirements or ‘nutriomes’ for chromosomal stability and telomere maintenance at the individual level. Proc Nutr Soc 67:146–156

    Article  CAS  Google Scholar 

  24. Liu B, Qian SB (2011) Translational regulation in nutrigenomics. Adv Nutr 2:511–519

    Article  CAS  Google Scholar 

  25. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35

    Article  CAS  Google Scholar 

  26. Stanfel MN, Shamieh LS, Kaeberlein M, Kennedy BK (2009) The TOR pathway comes of age. Biochim Biophys Acta 1790:1067–1074

    Article  CAS  Google Scholar 

  27. Holmes E, Li JV, Marchesi JR, Nicholson JK (2012) Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab 16:559–564

    Article  CAS  Google Scholar 

  28. Sekirov I, Finlay BB (2009) The role of the intestinal microbiota in enteric infection. J Physiol 587:4159–4167

    Article  CAS  Google Scholar 

  29. Lepage P, Leclerc MC, Joossens M et al (2013) A metagenomic insight into our gut’s microbiome. Gut 62:146–158

    Article  Google Scholar 

  30. Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  CAS  Google Scholar 

  31. Burcelin R, Garidou L, Pomie C (2012) Immuno-microbiota cross and talk: the new paradigm of metabolic diseases. Semin Immunol 24:67–74

    Article  CAS  Google Scholar 

  32. Kussmann M, Van Bladeren PJ (2011) The extended nutrigenomics: understanding the interplay between the genomes of food, gut microbes, and human host. Front Genet 2:21

    Article  Google Scholar 

  33. Subbiah MT (2007) Nutrigenetics and nutraceuticals: the next wave riding on personalized medicine. Transl Res 149:55–61

    Article  CAS  Google Scholar 

  34. Joost HG, Gibney MJ, Cashman KD et al (2007) Personalised nutrition: status and perspectives. Br J Nutr 98:26–31

    Article  CAS  Google Scholar 

  35. Kaput J (2008) Nutrigenomics research for personalized nutrition and medicine. Curr Opin Biotechnol 19:110–120

    Article  CAS  Google Scholar 

  36. Sutton KH (2007) Considerations for the successful development and launch of personalised nutrigenomic foods. Mutat Res 622:117–121

    Article  CAS  Google Scholar 

  37. El Kochairi I, Montagner A, Rando G et al (2011) Beneficial effects of combinatorial micronutrition on body fat and atherosclerosis in mice. Cardiovasc Res 91:732–741

    Article  Google Scholar 

  38. Ghosh D, Skinner MA, Laing WA (2007) Pharmacogenomics and nutrigenomics: synergies and differences. Eur J Clin Nutr 61:567–574

    Article  CAS  Google Scholar 

  39. Afman L, Muller M (2006) Nutrigenomics: from molecular nutrition to prevention of disease. J Am Diet Assoc 106:569–576

    Article  CAS  Google Scholar 

  40. Davis CD, Milner JA (2011) Nutrigenomics, vitamin D and cancer prevention. J Nutrigenet Nutrigenomics 4:1–11

    Article  CAS  Google Scholar 

  41. Kitano H (2002) Computational systems biology. Nature 420:206–210

    Article  CAS  Google Scholar 

  42. Reilly PR, Debusk RM (2008) Ethical and legal issues in nutritional genomics. J Am Diet Assoc 108:36–40

    Article  Google Scholar 

  43. Ronteltap A, van Trijp JC, Renes RJ (2009) Consumer acceptance of nutrigenomics-based personalised nutrition. Br J Nutr 101(1):132–44

    Article  CAS  Google Scholar 

  44. Gill R (2009) Business application of nutrigenomics: an industry perspective. In: Castle D, Ries NM (eds) Nutrition and genomics. Issues of ethics, laws, regulations and communication, 1st edn. Academic Press/Elsevier, pp 45–61

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Wahli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Constantin, N., Wahli, W. Nutrigenomic foods. Nutrafoods 12, 3–12 (2013). https://doi.org/10.1007/s13749-013-0014-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13749-013-0014-x

Keywords

Navigation