Skip to main content
Log in

Interactions Between Bt-Bioinsecticides and Podisus nigrispinus (Dallas) (Hemiptera: Pentatomidae), a Predator of Plutella xylostella (L.) (Lepidoptera: Plutellidae)

  • Pest Management
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

Bioinsecticides are being increasingly used to protect vegetable crops against herbivores, but data on the side effects of such strategy on the third trophic level are still required. We investigated the influence of the Bacillus thuringiensis subsp. kurstaki HD-1 strain and of the commercial bioinsecticide Agree® on the biological aspects of the predator Podisus nigrispinus (Dallas) (Hemiptera: Pentatomidae) when feeding on Plutella xylostella (L.) (Lepidoptera: Plutellidae)-infected larvae. On average, infected larvae were consumed more often than the non-infected larvae throughout the predator nymphal development, and no effect on nymph survival was observed. Population growth parameters (R 0, r m, and λ) resulting from the fertility life tables did not differ among treatments. The results led to the conclusion that P. nigrispinus can be used in combination with the product Agree® or the strain HD-1 for the control of P. xylostella. The combined use of these control agents helps to maintain the balance of the ecosystem and contributes for the production of food for healthy human consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1

Similar content being viewed by others

References

  • Alves SB, Moraes SB (1998) Quantificação de inóculo de patógenos de insetos. In: Alves SB (ed) Controle microbiano de insetos. FEALQ, Piracicaba, pp 765–778

    Google Scholar 

  • Brar SK, Verma M, Tyagi RD, Valéro JR (2006) Recent advances in downstream processing and formulations of Bacillus thuringiensis based pesticides. Process Biochem 41:323–342

    Article  CAS  Google Scholar 

  • Bravo A, Likitvivatanavong S, Gill SS, Soberón M (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41:423–431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carvalho VFP, Vacari AM, Pomari AF, De Bortoli CP, Ramalho DG, De Bortoli SA (2012) Interaction between the predator Podisus nigrispinus (Hemiptera: Pentatomidae) and the entomopathogenic bacteria Bacillus thuringiensis. Environ Entomol 41:1454–1461

    Article  CAS  PubMed  Google Scholar 

  • Castelo Branco M, França FH, Pontes LA, Amaral PST (2003) Avaliação da suscetibilidade a inseticidas em populações da traça-das-crucíferas de algumas áreas do Brasil. Hortic Bras 21:49–52

    Google Scholar 

  • Corrêa-Ferreira BS, Moscardi F (1995) Seasonal occurrence and host spectrum of egg parasitoids associated with soybean stink bugs. Biol Control 5:196–202

    Article  Google Scholar 

  • De Bortoli SA, Otuka AK, Vacari AM, Martins MIEG, Volpe HXL (2011) Comparative biology and production costs of Podisus nigrispinus (Hempitera: Pentatomidae) when fed different types of prey. Biol Control 58:127–132

    Article  Google Scholar 

  • De Bortoli SA, Polanczyk RA, Vacari AM, De Bortoli CP, Duarte RT (2013) Plutella xylostella (Linnaeus, 1758): tactics for integrated pest management in Brassicaceae. In: Soloneski S, Larramendy M (eds) Weed and pest control conventional and new challenges. Intech, New York, pp 31–52

    Google Scholar 

  • Evangelista Júnior WS, Manoel GC, Gondim Júnior MGC, Torres JB, Marques EJ (2004) Fitofagia de Podisus nigrispinus em algodoeiro e plantas daninhas. Pesqui Agropecu Bras 39:413–420

    Article  Google Scholar 

  • Ferré JM, van Rie J (2002) Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 47:501–533

    Article  PubMed  Google Scholar 

  • Furlong BE, Wright DJ (1994) Examination of stability of resistance and cross resistance patterns to acylurea insect regulatorsin field populations of the diamondback moth, Plutella xylostella, from Malaysia. Pest Manag Sci 42:315–326

    Article  CAS  Google Scholar 

  • Glare TR, O’Callaghan M (2000) Bacillus thuringiensis: Biology, ecology and safety. Wiley, New York, p 350

    Google Scholar 

  • González-Zamora JE, Camúñez S, Avilla C (2007) Effects of Bacillus thuringiensis Cry toxins on developmental and reproductive characteristics of the predator Orius albidipennis (Hemiptera: Anthocoridae) under laboratory conditions. Environ Entomol 36:1246–1253

    Article  PubMed  Google Scholar 

  • Gravena S, Lara FM (1982) Controle integrado de pragas e receituário agronômico. In: Graziano Neto F (ed) Receituário agronômico. Agroedições, São Paulo, pp 123–161

    Google Scholar 

  • Haverty MI (1982) Sensitivity of selected non target insects to the carrier of Dipel 4L in the laboratory. Environ Entomol 11:337–338

    Article  Google Scholar 

  • Hernandez-Martinez P, Navarro-Cerrillo G, Caccia S, De Maagd AR, Moar WJ, Ferré J, Escriche B, Herrero S (2010) Constitutive activation of the midgut response to Bacillus thuringiensis in Bt-resistant Spodoptera exigua. PloS ONE 5(9), e12795. doi:10.1371/journal.pone.0012795

    Article  PubMed Central  PubMed  Google Scholar 

  • Krebs CJ (1994) Ecology: the experimental analysis of distribution and abundance. Harper & Row, New York, p 801

    Google Scholar 

  • Lin Q, Jin F, Hu Z, Chen H, Yin F, Li Z, Dong X, Zhang D, Ren S, Feng X (2013) Transcriptome analysis of chlorontraniliprole resistance development in the diamondback moth Plutella xylostella. PLoS ONE 8(8), e72314. doi:10.1371/journal.pone.0072314

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Magalhães GO, Vacari AM, Laurentis VL, De Bortoli SA, Polanczyk RA (2015) Interactions of Bacillus thuringiensis and the predatory stink bug Podisus nigrispinus to control Plutella xylostella. J Appl Entomol 139:123–133

    Article  Google Scholar 

  • Maia AHN, Luiz AJB, Campanhola C (2000) Statistical inference on associated fertility life table parameters using Jackknife technique: computational aspects. J Econ Entomol 3:511–518

    Article  Google Scholar 

  • Medeiros RS, Ramalho FS, Lemos WP, Zanuncio JC (2000) Age-dependent fecundity and life-fertility tables for Podisus nigrispinus (Dallas) (Het., Pentatomidae). J Appl Entomol 124:319–324

    Article  Google Scholar 

  • Mohaghegh J, De Clercq P, Tirry L (2000) Toxicity of selected insecticides to the spined soldier bug, Podisus maculiventris (Heteroptera: Pentatomidae). Biocontrol Sci Techn 10:33–40

    Article  Google Scholar 

  • Nascimento ML, Capalbo DF, Moraes GJ, De Nardo EA, Maia AHN, Oliveira RCAL (1998) Effect of a formulation of Bacillus thuringiensis Berliner var. kurstaki on Podisus nigrispinus Dallas (Heteroptera: Pentatomidae: Asopinae). J Invertebr Pathol 72:178–180

    Article  CAS  PubMed  Google Scholar 

  • Perez CJ, Shelton AM (1997) Resistance of Plutella xylostella (Lepidoptera: Plutellidae) to Bacillus thuringiensis Berliner in Central America. J Econ Entomol 90:87–93

    Article  CAS  Google Scholar 

  • Peter G, Sengonca C (1992) Enhancement of the solitary parasitoid Apanteles rubecula March. (Hym. Braconidae) in cabbage fields cultivating different intercroppings. DGaaE 8:93–98

    Google Scholar 

  • Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotecnol 24:63–71

    Article  CAS  Google Scholar 

  • Saini ED (1985) Identification of the eggs of pentatomids (Heteroptera) found in soybean crops. Rev Appl Entomol 73:782–783

    Google Scholar 

  • SAS Institute (2002) SAS/STAT: User’s Guide, version 9.0. SAS Institute Inc, Cary, p 5121

    Google Scholar 

  • Silva-Torres CSA, Pontes IVAF, Torres JB, Barros R (2010) New records of natural enemies of Plutella xylostella (L.) (Lepidoptera: Plutellidae) in Pernambuco, Brazil. Neotrop Entomol 39:835–838

    Article  PubMed  Google Scholar 

  • Silva-Torres CSA, Torres JB, Barros R (2011) Can cruciferous agroecosystems grown under variable conditions influence biological control of Plutella xylostella (Lepidoptera: Plutellidae)? Biocontol Sci Techn 21:625–641

    Article  Google Scholar 

  • Southwood TER (1978) Ecological methods. Chapman and Hall, London, p 524

    Book  Google Scholar 

  • Tabashnik BE (1994) Evolution of resistance to Bacillus thuringiensis. Annu Rev Entomol 39:47–79

    Article  Google Scholar 

  • Tian JC, Wang XP, Long LP, Romeis J, Naranjo SE, Hellmich RL, Wang P, Earle ED, Shelton AM (2013) Bt crops producing Cry1Ac, Cry2Ab and Cry1F do not harm the green lacewing, Chrysoperla rufilabris. PloS ONE 8(3), e60125. doi:10.1371/journal.pone.0060125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Torres JB, Ruberson JR (2008) Interactions of Bacillus thuringiensis Cry1Ac toxin in genetically engineered cotton with predatory heteropterans. Transgenic Res 17:345–354

    Article  CAS  PubMed  Google Scholar 

  • Torres JB, Ruberson JR, Adang MJ (2006) Expression of Bacillus thuringiensis Cry1Ac protein in cotton plants, acquisition by pests and predators: a tritrophic analysis. Agric For Entomol 8:191–202

    Article  Google Scholar 

  • Vacari AM, Albergaria NMMS, Otuka AK, Dória HOS, Loureiro E, De Bortoli SA (2004) Seletividade de óleo de nim (Azadirachta indica A. Juss) sobre Podisus nigrispinus (Dallas, 1851) (Heteroptera: Pentatomidae). Arq Inst Biol 71:190–194

    Google Scholar 

  • Vacari AM, Otuka AK, De Bortoli SA (2007) Desenvolvimento de Podisus nigrispinus (Dallas, 1851) (Hemiptera: Pentatomidae) alimentado com lagartas de Diatraea saccharalis (Fabricius, 1794) (Lepidoptera: Crambidae). Arq Inst Biol 74:259–265

    Google Scholar 

  • Vacari AM, De Bortoli SA, Goulart RM, Volpe HXL, Otuka AK, Veiga ACP (2013) Comparison of eggs, larvae, and pupae of Plutella xylostella as prey for Podisus nigrispinus. Ann Entomol Soc Am 106:235–242

    Article  Google Scholar 

  • Vivan LM, Torres JB, Veiga AFSL, Zanuncio JC (2002) Comportamento de predação e conversão alimentar de Podisus nigrispinus sobre a traça-do-tomateiro. Pesqui Agropecu Bras 37:581–587

    Article  Google Scholar 

  • Wright DJ, Iqbal M, Granero F, Ferré JA (1997) Change in a single midgut receptor in the diamondback moth (Plutella xylostella) is only part responsible for field resistance to Bacillus thuringiensis subsp. kurstaki and Bacillus thuringiensis subsp. aizawai. Appl Environ Microbiol 63:1814–1819

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xia Y, Lu Y, Shen J, Gao X, Qiu H, Li J (2014) Resistance monitoring for eight insecticides in Plutella xylostella in central China. Crop Protection 63:131–137

    Article  CAS  Google Scholar 

  • Zago HB, Siqueira HAA, Pereira EJG, Picanço MC, Barros R (2014) Resistance and behavioural response of Plutella xylostella (Lepidoptera: Plutellidae) populations to Bacillus thuringiensis formulations. Pest Manag Sci 70:488–495

    Article  CAS  PubMed  Google Scholar 

  • Zalucki MP, Shabbir A, Silva R, Adamson D, Shu-Sheng L, Furlong MJ (2012) Estimating the economic cost of one of the world’s major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): just how long is a piece of string? J Econ Entomol 105:1115–1129

    Article  PubMed  Google Scholar 

  • Zanuncio JC (2002) Uma década de estudos com percevejos predadores: Conquistas e desafios. In: Parra JRP, Botelho PSM, Corrêa-Ferreira BS, Bento JMS (eds) Controle Biológico no Brasil: Parasitoides e predadores. Manole, São Paulo, pp 495–528

    Google Scholar 

  • Zanuncio TV, Zanuncio ZC, Batalha VC, Santos GP (1993) Efeito da alimentação com lagartas de Bombyx mori e larvas de Musca domestica no desenvolvimento de Podisus nigrolimbatus (Hemiptera: Pentatomidae). Rev Bras Entomol 37:273–277

    Google Scholar 

Download references

Acknowledgments

We would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A M Vacari.

Additional information

Edited by Ítalo Delalibera Jr – ESALQ/USP

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 394 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magalhães, G.O., Vacari, A.M., DE Bortoli, C.P. et al. Interactions Between Bt-Bioinsecticides and Podisus nigrispinus (Dallas) (Hemiptera: Pentatomidae), a Predator of Plutella xylostella (L.) (Lepidoptera: Plutellidae). Neotrop Entomol 44, 521–527 (2015). https://doi.org/10.1007/s13744-015-0314-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-015-0314-5

Keywords

Navigation