Skip to main content
Log in

Combination of chemical vapor deposition and thermal growth methods for facile synthesis of tin oxide-doped multiwalled carbon nanotubes

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Transition metal oxides (TMOs), such as tin dioxide (SnO2)-based materials, are claimed to be one of the most interesting classes of solids, exhibiting varieties of properties, structures and applications. TMOs have been attracting growing research attention due to their characteristic properties such as plentiful active sites, the high theoretical capacity and diverse reaction mechanisms. Herein, the optimal condition for fabricating SnO2-carbon nanotube (SnO2/CNTs) nanohybrids using the atmospheric pressure chemical vapor deposition and thermal growth process has been described. As well as, the SnO2 thin film was exposed to the functionalized multiwalled carbon nanotubes (F-MWCNTs) via solution mixing for thermal growth process. The effect of essential parameters on optical and morphological properties of thin films was optimized. According to the results, the conditions in which the nanohybrid films had the best quality are as follows: 300 °C re-heating temperature, DMSO solvent, and 6 mg amount of FMWCNTs. Absorption and reflection modes of UV/Vis spectroscopy detected the peak changes of the fabricated films in each stage and confirmed their crystal structure. Furthermore, the crystal structure and atomic composition of the SnO2-carbon nanotubes films were analyzed to assess surface properties of the thin films by scanning electron microscopy and by X-ray diffraction (EDX), respectively. This new synthetic method suggested a facile means to produce SnO2/MWCNT thin films with the aim of using it to fabricate the gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Van Hieu, N.A.P. Duc, T. Trung, M.A. Tuan, N.D. Chien, Sens. Actuators B Chem. 144, 450 (2010)

    Article  Google Scholar 

  2. N. Rani, K. Khurana, N. Jaggi, Appl. Nanosci. 11, 2291 (2021)

    Article  CAS  Google Scholar 

  3. S. Das, V. Jayaraman, Prog. Mater. Sci. 66, 112 (2014)

    Article  CAS  Google Scholar 

  4. Y.-L. Liu, H.-F. Yang, Y. Yang, Z.-M. Liu, G.-L. Shen, R.-Q. Yu, Thin Solid Films 497, 355 (2006)

    Article  CAS  Google Scholar 

  5. P. Jayanthi, G. Saranya, J. Duraimurugan, P. Sengodan, S. Ravichandran, R. Usha, N. Bhuvaneshwari, J. Sol-Gel Sci. Technol. 108, 112 (2023)

    Article  CAS  Google Scholar 

  6. S. M. Ingole, S. T. Navale, Y. H. Navale, D. K. Bandgar, F. J. Stadler, R. S. Mane, N. S. Ramgir, S. K. Gupta, D. K. Aswal, and V. B. Patil, J. Colloid Interface Sci. (2017).

  7. G.D. Khuspe, R.D. Sakhare, S.T. Navale, M.A. Chougule, Y.D. Kolekar, R.N. Mulik, R.C. Pawar, C.S. Lee, V.B. Patil, Ceram. Int. 39, 8673 (2013)

    Article  CAS  Google Scholar 

  8. S.B. Naghadeh, S. Vahdatifar, Y. Mortazavi, A.A. Khodadadi, A. Abbasi, Sens. Actuators B Chem. 223, 252 (2016)

    Article  CAS  Google Scholar 

  9. M. Narjinary, P. Rana, A. Sen, M. Pal, Mater. Des. 115, 158 (2017)

    Article  CAS  Google Scholar 

  10. Y. Zhao, J. Zhang, Y. Wang, Z. Chen, Nanoscale Res. Lett. 15, 40 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Y. Jia, L. He, Z. Guo, X. Chen, F. Meng, T. Luo, M. Li, J. Liu, J. Phys. Chem. C 113, 9581 (2009)

    Article  CAS  Google Scholar 

  12. S.J. Young, Z.D. Lin, Microsyst. Technol. 24, 55 (2018)

    Article  CAS  Google Scholar 

  13. Y.X. Liang, Y.J. Chen, T.H. Wang, Appl. Phys. Lett. 85, 666 (2004)

    Article  CAS  Google Scholar 

  14. S. Majumdar, P. Nag, P.S. Devi, Mater. Chem. Phys. 147, 79 (2014)

    Article  CAS  Google Scholar 

  15. S. Navazani, M. Hassanisadi, M.M. Eskandari, Z. Talaei, Synth. Met. 260, 116267 (2020)

    Article  CAS  Google Scholar 

  16. M.D. Badry, M.A. Wahba, R.K. Khaled, S.K. El-Mahy, J. Electron. Mater. 49, 3191 (2020)

    Article  CAS  Google Scholar 

  17. N. Sezer, M. Koç, Surfaces and Interfaces 14, 1 (2019)

    Article  CAS  Google Scholar 

  18. A.G. Osorio, I.C.L. Silveira, V.L. Bueno, C.P. Bergmann, Appl. Surf. Sci. 255, 2485 (2008)

    Article  CAS  Google Scholar 

  19. R. Sharma, A.K. Sharma, V. Sharma, Cogent Eng. 2, 1094017 (2015)

    Article  Google Scholar 

  20. Y. Fu, N. Nabiollahi, T. Wang, S. Wang, Z. Hu, B. Carlberg, Y. Zhang, X. Wang, J. Liu, Nanotechnology 23, 45304 (2012)

    Article  Google Scholar 

  21. M. Baro, P. Nayak, T.T. Baby, S. Ramaprabhu, J. Mater. Chem. A 1, 482 (2013)

    Article  CAS  Google Scholar 

  22. S. Claramunt, O. Monereo, M. Boix, R. Leghrib, J.D. Prades, A. Cornet, P. Merino, C. Merino, A. Cirera, Sens. Actuators B Chem. 187, 401 (2013)

    Article  CAS  Google Scholar 

  23. S.-K. Lee, D. Chang, S.W. Kim, J. Hazard. Mater. 268, 110 (2014)

    Article  CAS  PubMed  Google Scholar 

  24. D. Jung, M. Han, G.S. Lee, Carbon N. Y. 78, 156 (2014)

    Article  CAS  Google Scholar 

  25. H.E. Unalan, P. Hiralal, D. Kuo, B. Parekh, G. Amaratunga, M. Chhowalla, J. Mater. Chem. 18, 5909 (2008)

    Article  CAS  Google Scholar 

  26. C.P. Deck, K. Vecchio, Carbon N. Y. 44, 267 (2006)

    Article  CAS  Google Scholar 

  27. K.P. De-Jong, J.W. Geus, Catal. Rev. 42, 481 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was done in the Payame Noor University, Mashhad, Iran.

Author information

Authors and Affiliations

Authors

Contributions

Somayyeh Ziaei carried out the experiments, involved in data collection, performed the analytic calculations, involved in sample analysis, involved in writing—original draft, and involved in data interpretation. Zarrin Es’haghi involved in conceptualization, supervised the project, verified the analytical methods, contributed to the final version of the manuscript, and edited the manuscript.

Corresponding authors

Correspondence to Somayyeh Ziaei or Zarrin Es’haghi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziaei, S., Es’haghi, Z. Combination of chemical vapor deposition and thermal growth methods for facile synthesis of tin oxide-doped multiwalled carbon nanotubes. J IRAN CHEM SOC 21, 1403–1411 (2024). https://doi.org/10.1007/s13738-024-03007-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-024-03007-9

Keywords

Navigation