Skip to main content
Log in

Fabrication and characterization of one-dimensional Co(OH)F nanorods and the photo-assisted Fenton-like activity for tetracycline degradation

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Co(OH)F nanorods have been synthesized from the reactions of Co(NO3)2, hexamethylenetetramine (HMTA) and NH4F via the hydrothermal method. The structures and morphologies of as-prepared sample are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), selected area electron diffraction (SAED), UV-visible diffuse reflectance spectrum (UV-DRS) and Raman. The photo-assisted Fenton-like activity of Co(OH)F nanorods was investigated by the degradation of tetracycline (TC) under visible light irradiation. The results show that the catalyst of Co(OH)F nanorods has good photocatalytic activity and stability. Radical scavengers and electron paramagnetic resonance spectra were employed to evaluate the capability to produce ·O2 and ·OH active species upon visible light illumination. The characterization and experimental results revealed that Co(OH)F nanorods may promote the decomposition of H2O2, thus improving photo-assisted Fenton-like reaction activity for degradation TC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8

Similar content being viewed by others

Data and code availability

A DOI to an electronic repository.

References

  1. X.M. Yang, Q.Q. Zhang, W.H. Gu, F. Teng, Facile self assembly of uniform Cu2Cl(OH)3 nanoflowers and its photo-Fenton degradation performance for dye wastewater. J. Cryst. Growth 541, 125681 (2020). https://doi.org/10.1016/j.jcrysgro.2020.125681

    Article  CAS  Google Scholar 

  2. Y.Y. Li, Y.H. Liu, X.G. Liu, X. Li, One-step synthesis of CdS/BiOCl: efficient visible light reactive photocatalysts with Z-scheme heterogeneous structure. J. Mater. Sci. 58, 5574–5586 (2023). https://doi.org/10.1007/s10853-023-08358-x

    Article  CAS  Google Scholar 

  3. L.P. Wu, W.G. Wang, S.H. Zhang, D. Mo, X.J. Li, Fabrication and characterization of Co-Doped Fe2O3 spindles for the enhanced photo-Fenton catalytic degradation of tetracycline. ACS Omega 6, 33717–33727 (2021). https://doi.org/10.1021/acsomega.1c04950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Y. Wang, X. Wu, J.Q. Liu et al., Mo-modified band structure and enhanced photocatalytic properties of tin oxide quantum dots for visible-light driven degradation of antibiotic contaminants. J. Environ. Chem. Eng. 10, 107091 (2022). https://doi.org/10.1016/j.jece.2021.107091

    Article  CAS  Google Scholar 

  5. Q.M. Peng, G.M. Peng, L.P. Wu, Y.Q. Chen, B. Han, Q.C. Su, S.J. Liu, X.J. Li, Photo-reduction enables catalyst regeneration in Fenton reaction on an Fe2O3-decorated TiO2 nanotube-based photocatalyst. Dalton Trans. 49, 6730–6737 (2020). https://doi.org/10.1039/d0dt00670j

    Article  CAS  PubMed  Google Scholar 

  6. T.X. Ma, C.M. Yang, L. Guo, R.A. Soomro, D.J. Wang, B. Xu, F. Fu, Refining electronic properties of Bi2MoO6 by in-doping for boosting overall nitrogen fixation via relay catalysis. Appl. Catal. B: Environ. 330, 122643 (2023). https://doi.org/10.1016/j.apcatb.2023.122643

    Article  CAS  Google Scholar 

  7. L.P. Wu, S.X. Ma, J. Li, X.J. Li, In2O3 anchored Fe2O3 nanorod arrays for enhanced photoelectrochemical performance. Thin Solid Films 724, 138600 (2021). https://doi.org/10.1016/j.tsf.2021.138600

    Article  CAS  Google Scholar 

  8. X.Y. Zhang, W.C. Yu, Y.J. Guo, S.L. Li, Y.R. Chen, H. Wang, Z.Y. Bian, Recent advances in photoelectrocatalytic advanced oxidation processes: From mechanism understanding to catalyst design and actual applications. Chem. Eng. J. 455, 140801 (2023). https://doi.org/10.1016/j.cej.2022.140801

    Article  CAS  Google Scholar 

  9. X.Y. Zhang, J.F. Ma, C.H. Fan, M.G. Peng, S. Komarneni, Enhancement of photo-Fenton-like degradation of orange II by MnO2/NiO nanocomposite with the synergistic effect from bisulfite. J. Alloy Compd. 785, 343–349 (2019). https://doi.org/10.1016/j.jallcom.2019.01.197

    Article  CAS  Google Scholar 

  10. Z.H. Cui, P. Wang, X.L. Liu et al., Design and synthesis of BiVO4@CuOx as a photo assisted Fenton-like catalyst for efficient degradation of tetracycline. Surf. Interfaces 26, 101380 (2021). https://doi.org/10.1016/j.surfin.2021.101380

    Article  CAS  Google Scholar 

  11. C.Y. Teng, K.G. Zhou, L.J. Liao, X.K. Zhang, K.Q. Zhao, J.W. Korvayan, C.H. Peng, W. Chen, Coordination-driven Cu-based Fenton-like process for humic acid treatment in wastewater. Sci. Total Environ. 838, 156462 (2022). https://doi.org/10.1016/j.scitotenv.2022.156462

    Article  CAS  PubMed  Google Scholar 

  12. A. Lassoued, L.J. Liu, J.F. Li, Removal of acid orange II azo dyes using Fe-based metallic glass catalysts by Fenton-like process. J. Mater. Sci. 57, 2039–2052 (2022). https://doi.org/10.1007/s10853-021-06669-5

    Article  CAS  Google Scholar 

  13. Z.Q. Xing, M. Fan, J.X. Liu, Y.W. Wang, X.C. Zhang, R. Li, Y.F. Wang, C.M. Fan, A novel Fenton-like catalyst and peroxymonosulfate activator of Mn3O4/λ-MnO2 for phenol degradation: synergistic effect and mechanism. Inorg. Chem. Commun. 150, 110396 (2023). https://doi.org/10.1016/j.inoche.2023.110396

    Article  CAS  Google Scholar 

  14. K. Shi, X. An, X. Wu, X.M. Xie, Modification strategies for enhancing anti-coking of Ni-, Co-based catalysts during ethanol steam reforming: a review. Int. J. Hydrogen Energy 47, 39404–39428 (2022). https://doi.org/10.1016/j.ijhydene.2022.09.097

    Article  CAS  Google Scholar 

  15. J.M. Gonçalves, L.V. Faria, A.B. Nascimento et al., Sensing performances of spinel ferrites MFe2O4 (M = Mg, Ni Co, Mn, Cu and Zn) based electrochemical sensors: a review. Anal. Chim. Acta 1233, 340362 (2022). https://doi.org/10.1016/j.aca.2022.340362

    Article  CAS  PubMed  Google Scholar 

  16. C.M. Yang, Y.Y. Zhang, F. Yue et al., Co doping regulating electronic structure of Bi2MoO6 to construct dual active sites for photocatalytic nitrogen fixation. Appl. Catal. B: Environ. 338, 123057 (2023). https://doi.org/10.1016/j.apcatb.2023.123057

    Article  CAS  Google Scholar 

  17. P.J. Guo, Z.Y. Xiong, S.Y. Yuan, K.H. Xie, H.J. Wang, Y.J. Gao, The synergistic effect of Co/CoO hybrid structure combined with biomass materials promotes photocatalytic hydrogen evolution. Chem. Eng. J. 420, 130372 (2021). https://doi.org/10.1016/j.cej.2021.130372

    Article  CAS  Google Scholar 

  18. Q. Wang, Z.T. Xu, S.X. Wang et al., Rapid synthesis of amorphous CoO nanosheets: Highly efficient catalyst for parachlorophenol degradation by peroxymonosulfate activation. Sep. Purif. Technol. 263, 118369 (2021). https://doi.org/10.1016/j.seppur.2021.118369

    Article  CAS  Google Scholar 

  19. Y. Yang, S.G. Meng, X.Z. Zheng, H.H. Wu, X.L. Fu, S.F. Chen, The morphology and photocatalytic performance of Zn(OH)F under different synthetic conditions. J. Fluorine Chem. 237, 109600 (2020). https://doi.org/10.1016/j.jfluchem.2020.109600S

    Article  CAS  Google Scholar 

  20. H. Wan, J. Qi, W. Zhang et al., Hierarchical Co(OH)F superstructure built by low-dimensional substructures for electrocatalytic water oxidation. Adv. Mater. 29, 1700286–1700295 (2017). https://doi.org/10.1002/adma.201700286

    Article  CAS  Google Scholar 

  21. Y.Q. Teng, S.S. Zhang, Y. Li, H.L. Zhao, Micro-sized Co(OH)F hexagram-loops as anode materials for lithium-ion batteries. Mater. Lett. 255, 126580 (2019). https://doi.org/10.1016/j.matlet.2019.126580

    Article  CAS  Google Scholar 

  22. Z.Z. Liang, Z.Y. Yang, Z.H. Huang et al., Novel insight into the epitaxial growth mechanism of six-fold symmetrical β-Co(OH)2/Co(OH)F hierarchical hexagrams and their water oxidation activity. Electrochim. Acta 271, 526–536 (2018). https://doi.org/10.1016/j.electacta.2018.03.186

    Article  CAS  Google Scholar 

  23. J.Q. Lv, X.X. Yang, H.Y. Zang, Y.H. Wang, Y.G. Li, Ultralong needle-like N-doped Co(OH)F on carbon fiber paper with abundant oxygen vacancies as an efficient oxygen evolution reaction catalyst. Mater. Chem. Front. 2, 2045–2053 (2018). https://doi.org/10.1039/c8qm00405f

    Article  CAS  Google Scholar 

  24. F. Wang, Y.X. Lai, Q.L. Fang et al., Facile fabricate of novel Co(OH)F@MXenes catalysts and their catalytic activity on bisphenol A by peroxymonosulfate activation: the reaction kinetics and mechanism. Appl. Catal. B Environ. 262, 118099 (2020). https://doi.org/10.1016/j.apcatb.2019.118099

    Article  CAS  Google Scholar 

  25. S.B. Ni, J.J. Ma, J.C. Zhang, X.L. Yang, L.L. Zhang, Facile synthesis of Co(OH)F micro-rods and its application as anode for lithium ion batteries. Mater. Lett. 139, 138–140 (2015). https://doi.org/10.1016/j.matlet.2014.10.035

    Article  CAS  Google Scholar 

  26. Y.H. Dou, D. Yuan, L.P. Yu et al., Interpolation between W dopant and Co vacancy in CoOOH for enhanced oxygen evolution catalysis. Adv. Mater. 34, 2104667 (2022). https://doi.org/10.1002/adma.202104667

    Article  CAS  Google Scholar 

  27. S. Alam, T.K. Sahu, M. Qureshi, One-Dimensional Co(OH)F as a noble metal-free redox mediator and hole extractor for boosted photoelectrochemical water oxidation in worm-like bismuth vanadate. ACS Sustain. Chem. Eng. 9, 5155–5165 (2021). https://doi.org/10.1021/acssuschemeng.1c00288

    Article  CAS  Google Scholar 

  28. L.P. Zhu, Z. Wen, W.M. Mei, Y.G. Li, Z.Z. Ye, Porous CoO nanostructure arrays converted from rhombic Co(OH)F and needle-like Co(CO3)0.5(OH)·0.11H2O and their electrochemical properties. J. Phys. Chem. C 117, 20465–20473 (2013). https://doi.org/10.1021/jp406146b

    Article  CAS  Google Scholar 

  29. S. Chen, Y. Song, X.J. Zhou, M.Y. Zhang, Co(OH)F nanorods@KxMnO2 nanosheet core-shell structured arrays for pseudocapacitor application. RSC Adv. 9, 36208–36212 (2019). https://doi.org/10.1039/c9ra07024a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Q. Lin, D.Y. Guo, L. Zhou et al., Tuning the interface of Co1-xS/Co(OH)F by atomic replacement strategy toward high-performance electrocatalytic oxygen evolution. ACS Nano 16, 15460–15470 (2022). https://doi.org/10.1021/acsnano.2c07588

    Article  CAS  PubMed  Google Scholar 

  31. L.P. Wu, X. Yang, Y.Q. Huang, X.J. Li, Enhanced photoelectrocatalytic performance of heterostructured TiO2-based nanoparticles decorated nanotubes. Appl. Phys. A Mater. Sci. Process 123, 403 (2017). https://doi.org/10.1007/s00339-017-1022-2

    Article  CAS  Google Scholar 

  32. Q. Wang, Y.L. Chen, R.X. Zhu, M.F. Luo, Z.R. Zou, H.M. Yu, X. Jiang, X.L. Xiong, One-step synthesis of Co(OH)F nanoflower based on micro-plasma: as an effective non-enzymatic glucose sensor. Sensor Actuators B Chem. 304, 127282 (2020). https://doi.org/10.1016/j.snb.2019.127282

    Article  CAS  Google Scholar 

  33. Y. Jia, L.Z. Zhang, A.J. Du, G.P. Gao, J. Chen, X.C. Yan, C.L. Brown, X.D. Yao, Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 28, 9532–9538 (2016). https://doi.org/10.1002/adma.201602912

    Article  CAS  PubMed  Google Scholar 

  34. Y. Peng, H.Y. Zhou, Z.H. Wang, Synthesis, characterization and photocatalytic activity of Zn(OH)F hierarchical nanofibers prepared by a simple solution-based method. CrystEngComm 14, 2812 (2012). https://doi.org/10.1039/C2CE06389A

    Article  CAS  Google Scholar 

  35. Q. Zhao, H.J. Kulik, Where does the density localize in the solid state? divergent behavior for hybrids and DFT+U. J. Chem. Theory Comput. 14, 670–683 (2018). https://doi.org/10.1021/acs.jctc.7b01061

    Article  CAS  PubMed  Google Scholar 

  36. Z.Z. Xu, F.F. Wang, J. Zhang, X.B. Chen, C.D. Chen, In situ synthesis of p-n (BiO)4CO3(OH)2/Bi2O2CO3 internal polarized heterojunction for improved visible light photocatalytic performance. Mater. Res. Express 7, 015910 (2020). https://doi.org/10.1088/2053-1591/ab62ec

    Article  CAS  Google Scholar 

  37. J.Q. Liu, C.J. Guo, N.N. Wu et al., Efficient photocatalytic degradation of PFOA in N-doped In2O3/simulated sunlight irradiation system and its mechanism. Chem. Eng. J. 435, 134627 (2022). https://doi.org/10.1016/j.cej.2022.134627

    Article  CAS  Google Scholar 

  38. L.P. Wu, X.Y. Wang, W.G. Wang, J. Li, X.J. Li, Fabrication of amorphous TiO2 shell layer on Ag2CO3 surface with enhanced photocatalytic activity and photostability. J. Alloy Compd. 806, 603–610 (2019). https://doi.org/10.1016/j.jallcom.2019.07.200

    Article  CAS  Google Scholar 

  39. A.Q. Wang, Z. Chen, Z.K. Zheng, H. Xu, H. Wang, K. Hu, K. Kai Yan, Remarkably enhanced sulfate radical-based photo-Fenton-like degradation of levofloxacin using the reduced mesoporous MnO@MnOx microspheres. Chem. Eng. J. 379, 122340 (2020). https://doi.org/10.1016/j.cej.2019.122340

    Article  CAS  Google Scholar 

  40. Y.X. Wang, C.M. Yang, L. Guo, Z.X. Yang, B.B. Jin, R. Du, F. Fu, D.J. Wang, Plate-on-plate structured MoS2/Cd0.6Zn0.4S Z-scheme heterostructure with enhanced photocatalytic hydrogen production activity via hole sacrificial agent synchronously strengthen half-reactions. J. Colloid Interf. Sci. 630, 341–351 (2023). https://doi.org/10.1016/j.jcis.2022.10.053

    Article  CAS  Google Scholar 

  41. Q.H. Zhang, D. He, X.R. Li, W. Feng, C. Lyu, Y.F. Zhang, Mechanism and performance of single oxygen dominated peroxymonosulfate activation on CoOOH nanoparticles for 2,4-dichlorophenol degradation in water. J. Hazard Mater. 384, 121350 (2020). https://doi.org/10.1016/j.jhazmat.2019.121350

    Article  CAS  PubMed  Google Scholar 

  42. Y.P. Li, X.L. Sun, Y.M. Tang et al., Understanding photoelectrocatalytic degradation of tetracycline over three-dimensional coral-like ZnO/BiVO4 nanocomposite. Mater. Chem. Phys. 271, 124871 (2021). https://doi.org/10.1016/j.matchemphys.2021.124871

    Article  CAS  Google Scholar 

  43. W.R. Liao, W.H. Chen, S.W. Lu, S.Y. Zhu, Y.Z. Xia, L. Qi, M.Q. Yang, S.J. Liang, Alkaline Co(OH)2-decorated 2D monolayer titanic acid nanosheets for enhanced photocatalytic syngas production from CO2. ACS Appl. Mater. Inter. 32, 38239–38247 (2021). https://doi.org/10.1021/acsami.1c08251

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Guangdong Province (No. 2021A1515010445), National Natural Science Foundation of China [No. 51802305, 52072079], and Science and Technology Program of Guangzhou City [No. 201904010131].

Author information

Authors and Affiliations

Authors

Contributions

LW contributed to investigation, methodology, data curation, writing—original draft, validation, and funding acquisition. DM contributed to data curation, writing—review & editing, and supervision. JD contributed to resources and supervision. WW contributed to funding acquisition, validation, and supervision.

Corresponding authors

Correspondence to Liangpeng Wu or Wenguang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This does not apply to this manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1214 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Mo, D., Duan, J. et al. Fabrication and characterization of one-dimensional Co(OH)F nanorods and the photo-assisted Fenton-like activity for tetracycline degradation. J IRAN CHEM SOC 20, 2689–2701 (2023). https://doi.org/10.1007/s13738-023-02866-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02866-y

Keywords

Navigation