Skip to main content

Advertisement

Log in

Synthesis of thiazolo[3,2-a]pyrimidine molecules, in vitro cytotoxic evaluation and molecular docking studies

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Novel hybrid molecules of thiazolopyrimidine 4a–j have been prepared starting from various thiazoles 3a–j. The reaction of thiazoles 3a–j with thiourea yielded hybrid molecules 4a–j in an excellent yield. These molecules were screened for their anticancer activities against human breast carcinoma cell line (MCF-7), human lung adenocarcinoma cell line (A549) and human cervical cancer cell line (HeLa) using MTT assay. Among all molecules, compounds 4g and 4f exhibited potent cytotoxic activity. Compound 4g with IC50 value of 3.1 ± 0.4 µM and IC50 value of 9.8 ± 0.4 µM against A549 and HeLa cell line, respectively. Compound 4f with IC50 value of 6.8 ± 0.7 µM against MCF-7 molecular docking study of all synthesized molecules 4a–j was performed on topoisomerase II using the AutoDock technique. All the synthesized thiazolopyrimidine hybrid molecules have been characterized and confirmed using spectroscopic techniques.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Hassanpour, M. Dehghani, Review of cancer from perspective of molecular. J. Cancer Res. Pract. 4(4), 127–129 (2017). https://doi.org/10.1016/j.jcrpr.2017.07.001

    Article  Google Scholar 

  2. R. Siegel, D. Naishadham, A. Jemal, Cancer statistics, 2013. CA: A Cancer J Clin. 63(1), 11–30 (2013). https://doi.org/10.3322/caac.21166

    Article  Google Scholar 

  3. K. Nurgali, R. Jagoe, R. Abalo, Editorial: adverse effects of cancer chemotherapy: anything new to improve tolerance and reduce sequelae. Front. Pharmacol. 9, 245 (2018). https://doi.org/10.1016/j.jcrpr.2017.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  4. G. Zhao G, L. Rodriguez, Molecular targeting of liposomal nanoparticles to tumor microenvironment. Int. J. Nanomed. (2012). https://doi.org/10.2147/IJN.S37859

  5. M. García-Valverde, T. Torroba, Sulfur-nitrogen heterocycles. Molecules 10(2), 318–320 (2005). https://doi.org/10.3390/10020318

    Article  PubMed Central  Google Scholar 

  6. N. Radin, Drug design: hiding in full view. Drug Dev. Res. 69(1), 15–25 (2008). https://doi.org/10.3390/10020318

    Article  CAS  Google Scholar 

  7. R. Islam, H. Fahmy, Thiazolopyrimidine scaffold as a promising nucleus for developing anticancer drugs: a review conducted in last decade. Anticancer Agents Med. Chem. 22(17), 2942–2955 (2022). https://doi.org/10.2174/1871520622666220411110528

    Article  CAS  PubMed  Google Scholar 

  8. S. Peter, S. Alven, B. Maseko, A. Aderibigbe, Doxorubicin-based hybrid compounds as potential anticancer agents: a review. Molecules (Basel, Switzerland) 27(14), 4478 (2022). https://doi.org/10.3390/molecules27144478

    Article  CAS  PubMed  Google Scholar 

  9. Z. Zhang, Z. Wang, Z. Li, Three-component one-pot construction of 2-aryl-4H-benzo[4,5]thiazolo[3,2-a]pyrimidines using solid calcium carbide as a surrogate of gaseous acetylene. Org. Lett. 24(29), 5491–5496 (2022). https://doi.org/10.1021/acs.orglett.2c02331

    Article  CAS  PubMed  Google Scholar 

  10. T. Tabibi, A. Esmaeili, T. Mague, An efficient diastereoselective synthesis of novel fused 5H-furo[2,3-d]thiazolo[3,2-a]pyrimidin-5-ones via one-pot three-component reaction. Mol. Divers. 26(1), 183–190 (2022). https://doi.org/10.1007/s11030-020-10173-4

    Article  CAS  PubMed  Google Scholar 

  11. A. Ibrahim, Synthesis and characterization of the novel heteroannulated chromeno[2,3- d]pyrimidines and chromeno[2,3-d][1,3]thiazolo[3,2-a] pyrimidines. J. Heterocycl. Chem. 59(12), 2076–2083 (2022). https://doi.org/10.1002/jhet.4542

    Article  CAS  Google Scholar 

  12. S. Agarkov, A. Litvinov, R. Gabitova, S. Ovsyannikov, V. Dorovatovskii, E. Solovieva, S. Antipin, Crystalline state hydrogen bonding of 2-(2-hydroxybenzylidene)thiazolo[3,2-a]pyrimidines: a way to non-centrosymmetric crystals. Crystals 12(4), 494 (2022). https://doi.org/10.3390/cryst12040494

    Article  CAS  Google Scholar 

  13. R. Aggarwal, N. Jain, S. Sharma, P. Kumar, P. Dubey, H. Chugh, R. Chandra, Visible-light driven regioselective synthesis, characterization and binding studies of 2-aroyl-3-methyl-6,7-dihydro-5H-thiazolo[3,2-a]pyrimidines with DNA and BSA using biophysical and computational techniques. Sci. Rep. 11(1), 22135 (2021). https://doi.org/10.1038/s41598-021-01037-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S. Hosseini, A. Esmaeili, A. Khojastehnezhad, B. Notash, An efficient synthesis of novel spiro[indole-3,8′-pyrano[2,3-d][1,3,4]thiadiazolo[3,2-a]pyrimidine derivatives via organobase-catalyzed three-component reaction of malononitrile, isatin and heterocyclic-1,3-diones. Journal of Sulphur Chemistry 42(6), 628–644 (2021). https://doi.org/10.1080/17415993.2021.1944144

    Article  CAS  Google Scholar 

  15. Y. Mahgoub, M. Elmaghraby, A. Harb, L. Ferreira da Silva, C. Justino, M. Marques, Synthesis, crystal structure, and biological evaluation of fused thiazolo[3,2-a]pyrimidines as new acetylcholinesterase inhibitors. Molecules (Basel, Switzerland) 24(12), 2306 (2019). https://doi.org/10.3390/molecules24122306

    Article  CAS  PubMed  Google Scholar 

  16. J. Akbari, P. Kachhadia, S. Tala, A. Bapodra, M. Dhaduk, H. Joshi et al., Synthesis of some new 1,2,3,4-tetrahydropyrimidine-2-thiones and their Thiazolo[3,2-a]pyrimidine derivatives as potential biological agents. Phosphorus Sulfur Silicon Relat. Elem. 183(8), 1911–1922 (2008). https://doi.org/10.1080/10426500701796330

    Article  CAS  Google Scholar 

  17. T. Sekhar, P. Thriveni, A. Venkateswarlu, T. Daveedu, K. Peddanna, S. Sainath, One-pot synthesis of thiazolo[3,2-a]pyrimidine derivatives, their cytotoxic evaluation and molecular docking studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 231, 118056 (2020). https://doi.org/10.1016/j.saa.2020.118056

    Article  CAS  Google Scholar 

  18. M. Keshari, R. Khan, H. Khalilullah, M. Yusuf, B. Ahmed, Pharmacophore modeling, design, and synthesis of potent antihypertensives, oxazolo/thiazolo-[3,2-a]-pyrimidin-3(2H)-one, and 1,5-dihydroimidazo-[1,2-a]-pyrimidin-3(2H)-one derivatives: a pilot trial. Bioorg. Med. Chem. Lett. 30(23), 127604 (2020). https://doi.org/10.1016/j.bmcl.2020.127604

    Article  CAS  PubMed  Google Scholar 

  19. E. Catanzaro, N. Betari, J. Arencibia, S. Montanari, C. Sissi, A. De Simone et al., Targeting topoisomerase II with trypthantrin derivatives: discovery of 7-((2-(dimethylamino)ethyl)amino)indolo[2,1-b]quinazoline-6,12-dione as an antiproliferative agent and to treat cancer. Eur. J. Med. Chem. 202, 112504 (2020). https://doi.org/10.1016/j.ejmech.2020.112504

    Article  CAS  PubMed  Google Scholar 

  20. V. Jean Kumar, Ö. Poyraz, S. Saxena, R. Schnell, P. Yogeeswari, G. Schneider et al., Discovery of novel inhibitors targeting the Mycobacterium tuberculosis O-acetylserinesulfhydrylase (CysK1) using virtual high-throughput screening. Bioorg. Med. Chem. Lett. 23(5), 1182–1186 (2013). https://doi.org/10.1016/j.bmcl.2013.01.031

    Article  CAS  PubMed  Google Scholar 

  21. S. Al-Rashood, S. Elshahawy, A. El-Qaias, D. El-Behedy, A. Hassanin, S. El-Sayed et al., New thiazolopyrimidine as anticancer agents: synthesis, biological evaluation, DNA binding, molecular modeling and ADMET study. Bioorg. Med. Chem. Lett. 30(23), 127611 (2020). https://doi.org/10.1016/j.bmcl.2020.127611

    Article  CAS  PubMed  Google Scholar 

  22. A. Mai, S. Massa, D. Rotili, R. Pezzi, P. Bottoni, R. Scatena et al., Exploring the connection unit in the HDAC inhibitor pharmacophore model: novel uracil-based hydroxamates. Bioorg. Med. Chem. Lett. 15(21), 4656–4661 (2005). https://doi.org/10.1016/j.bmcl.2005.07.081

    Article  CAS  PubMed  Google Scholar 

  23. S. Guccione, M. Modica, J. Longmore, D. Shaw, G. Barretta, A. Santagati et al., Synthesis and NK-2 antagonist effect of 1,6-diphenyl-pyrazolo [3,4-d]-thiazolo[3,2-a]4H-pyrimidin-4-one. Bioorg. Med. Chem. Lett. 6(1), 59–64 (1996). https://doi.org/10.1016/0960-894x(95)00558-b

    Article  CAS  Google Scholar 

  24. D. Cai, Z. Zhang, Y. Chen, X. Yan, S. Zhang, L. Zou et al., Synthesis of some new thiazolo[3,2-a]pyrimidine derivatives and screening of their in vitro antibacterial and antitubercular activities. Med. Chem. Res. 25(2), 292–302 (2015). https://doi.org/10.1007/s00044-015-1481-y

    Article  CAS  Google Scholar 

  25. G. Hassan, Synthesis and antitumor activity of certain new thiazolo[2,3-b]quinazoline and thiazolo[3,2-a]pyrimidine analogs. Med. Chem. Res. 23(1), 388–401 (2013). https://doi.org/10.1007/s00044-013-0649-6

    Article  CAS  Google Scholar 

  26. K. Umesha, B. Sarojini, C. Darshan Raj, V. Bhanuprakash, R. Yogisharadhya, R. Raghavendra et al., In vitro and in silico biological studies of novel thiazolo[3,2-a]pyrimidine-6-carboxylate derivatives. Med. Chem. Res. 23(1), 168–180 (2013). https://doi.org/10.1007/s00044-013-0606-4

    Article  CAS  Google Scholar 

  27. O. Alam, S. Khan, N. Siddiqui, W. Ahsan, Synthesis and pharmacological evaluation of newer thiazolo [3,2-a] pyrimidines for anti-inflammatory and antinociceptive activity. Med. Chem. Res. 19(9), 1245–1258 (2009). https://doi.org/10.1007/s00044-009-9267-8

    Article  CAS  Google Scholar 

  28. Y. Wang, Y. Han, L. Zhang, Binary catalytic system for homo- and block copolymerization of ε-caprolactone with δ-valerolactone. RSC Adv. 10(43), 25979–25987 (2020). https://doi.org/10.1039/d0ra04974c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. J. Bai, J. Wang, Y. Wang, L. Zhang, Dual catalysis system for ring-opening polymerization of lactones and 2,2-dimethyltrimethylene carbonate. Polym. Chem. 9(39), 4875–4881 (2018). https://doi.org/10.1039/c8py01230j

    Article  CAS  Google Scholar 

  30. H. Seyrani, S. Ramezanpour, A. Vaezghaemi, F. Kobarfard, A sequential Ugi–Smiles/transition-metal-free endo-dig Conia–ene cyclization: the selective synthesis of saccharin substituted 2,5-dihydropyrroles. New J. Chem. 45(34), 15647–15654 (2021). https://doi.org/10.1039/d1nj01159f

    Article  CAS  Google Scholar 

  31. A. Makowska, F. Sączewski, J. Bednarski, J. Sączewski, L. Balewski, Hybrid molecules composed of 2,4-diamino-1,3,5-triazines and 2-imino-coumarins and coumarins. Synthesis and cytotoxic properties. Molecules (Basel, Switzerland) 23(7), 1616 (2018). https://doi.org/10.3390/molecules23071616

    Article  CAS  PubMed  Google Scholar 

  32. S. Shaveta, P. Singh, Hybrid molecules: the privileged scaffolds for various pharmaceuticals. Eur. J. Med. Chem. 124, 500–536 (2016). https://doi.org/10.1016/j.ejmech.2016.08.039

    Article  CAS  PubMed  Google Scholar 

  33. R. Shinde, N. Inamdar, M. Shinde, C. Pawar, B. Kushwaha, A. Obakachi, A. Kajee, R. Chauhan, R. Karpoormath, Discovery of oxazoline-triazole based hybrid molecules as DNA gyrase inhibitors: a new class of potential Anti-tubercular agents. J. Mol. Struct. 1273, 134243 (2023). https://doi.org/10.1016/j.molstruc.2022.134243

    Article  CAS  Google Scholar 

  34. K. Singh, D. Mandalapu, S. Kumar, P. Maurya, S. Krishna, S. Thakur, S. Pant, I. Siddiqi, L. Sharma, D. Banerjee, Novel curcumin monocarbonyl analogue-dithiocarbamate hybrid molecules target human DNA ligase I and show improved activity against colon cancer. Med. Chem. Res.: Int. J. Rapid Commun. Des. Mech. Action Biol. Act. Agents 32(1), 57–75 (2023). https://doi.org/10.1007/s00044-022-02983-y

    Article  CAS  Google Scholar 

  35. H. Takamura, Y. Kinoshita, T. Yorisue, I. Kadota, Chemical synthesis and antifouling activity of monoterpene-furan hybrid molecules. Org. Biomol. Chem. 21(3), 632–638 (2023). https://doi.org/10.1039/d2ob02203f

    Article  CAS  PubMed  Google Scholar 

  36. A. Pansuriya, M. Savant, C. Bhuva, J. Singh, Y. Naliapara, Use of cyclic aliphatic ketones for spiro 2-amino-3-cyano pyrano[3,2-c]chromene formation. ARKIVOC 2009(12), 254–260 (2009). https://doi.org/10.3998/ark.5550190.0010.c22

    Article  Google Scholar 

  37. A. Pandit, M. Savant, K. Ladva, An efficient one-pot synthesis of highly substituted pyridone derivatives and their antimicrobial and antifungal activity. J. Heterocycl. Chem. 55(4), 983–987 (2018). https://doi.org/10.1002/jhet.3128

    Article  CAS  Google Scholar 

  38. D. Bhavsar, J. Trivedi, S. Parekh, M. Savant, S. Thakrar, A. Bavishi et al., Synthesis and in vitro anti-HIV activity of N-1,3-benzo[d]thiazol-2-yl-2-(2-oxo-2H-chromen-4-yl)acetamide derivatives using MTT method. Bioorg. Med. Chem. Lett. 21(11), 3443–3446 (2011). https://doi.org/10.1016/j.bmcl.2011.03.105

    Article  CAS  PubMed  Google Scholar 

  39. S Kuarm B, V Madhav J, Rajitha B, Xanthan sulfuric acid: an efficient bio-supported and recyclable solid acid catalyst for the synthesis of 2-minothiazole-5-carboxylates and 2-aminoselenazole-5-carboxylates. Lett. Org. Chem. 8(8), 549–553 (2011). https://doi.org/10.2174/157017811797249443

    Article  Google Scholar 

  40. C. Lipinski, F. Lombardo, B. Dominy, P. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23(1–3), 3–25 (1997). https://doi.org/10.1016/s0169-409x(96)00423-1

    Article  CAS  Google Scholar 

  41. O. Trott, A. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2), 455–461 (2009). https://doi.org/10.1002/jcc.21334

    Article  CAS  Google Scholar 

  42. Dassault Systèmes BIOVIA, Discovery Studio Modeling Environment, Release 2017 (Dassault Systèmes, San Diego, 2017)

Download references

Acknowledgements

Authors are thankful to Atmiya University, Rajkot, for providing laboratory facilities and for constant encouragement. Mr. Jaysinh Jadeja is thankful for the fellowship given under Scheme of Developing High Quality Research (SHODH) (Ref. No. 20190124005, Dated 25/10/2020), Education Department, Government of Gujarat. The authors would like to thank Mrs. Riya Mashru, Department of Microbiology, Atmiya University, Rajkot, for doing the molecular docking and anticancer screening of the synthesized molecules. We also thank Center of Excellence, NFDD Complex, Saurashtra University, Rajkot, for analytical and spectral services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Savant.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadeja, J., Savant, M. Synthesis of thiazolo[3,2-a]pyrimidine molecules, in vitro cytotoxic evaluation and molecular docking studies. J IRAN CHEM SOC 20, 1491–1502 (2023). https://doi.org/10.1007/s13738-023-02772-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02772-3

Keywords

Navigation