Skip to main content
Log in

Spectroscopic and electrochemical study of biomimetic catecholase and phenoxazinone synthase activities of in situ complexes bearing pyrazolic ligands

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In situ complexes, arising from six ligands based on pyrazol (L1-L6): N,N-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-4-fluoroaniline (L1); 5-chloro-N-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)pyridin-2-amine (L2); N-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-N-phenylaniline (L3); N-((1H-pyrazol-1-yl) methyl)-N-phenylbenzenamine (L4); N,N-bis((1H-pyrazol-1-yl)methyl)-4-fluoroaniline (L5); and N-((3,5-dimethyl-1H-pyrazol-1-yl)methyl)aniline (L6), were reported and examined, in combination with different metallic salts, for their catecholase and phenoxazinone synthase activities at ambient conditions. We highlight the utility of spectroscopic and electrochemical methods, for studying the catalytic activity of biomimetic complexes and understanding the catalytic mechanism of substrate oxidation; the electrochemical oxidation of catechol has been successfully performed by cyclic voltammetry at room temperature and electrochemical cell with three electrodes. The role of metallic salt and the ligand structure of these complexes on their catecholase and phenoxazinone synthase activity have been examined. The metallic salt Cu(CH3COO)2 appears a better candidate to produce the best model of the two studied enzymes in neutral mediums.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Aljawish, I. Chevalot, J. Jasniewski, J. Scher, L. Muniglia, J. Mol. Catal. B Enzym. 112, 25–39 (2015). https://doi.org/10.1016/j.molcatb.2014.10.014

    Article  CAS  Google Scholar 

  2. J. Xu, S. Strandman, J.X.X. Zhu, J. Barralet, M. Cerruti, Biomaterials 37, 395–404 (2015). https://doi.org/10.1016/j.biomaterials.2014.10.024

    Article  CAS  PubMed  Google Scholar 

  3. C. Cougnon, E. Lebegue, G. Pognon, J. Power Sources 274, 551–559 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.091

    Article  CAS  Google Scholar 

  4. B.P. Lee, A. Meng-HsienLin, S. Narkar, R. Konst, Wilharm. Sens. Actuators B 206, 456–462 (2015). https://doi.org/10.1016/j.snb.2014.09.089

    Article  CAS  Google Scholar 

  5. M. Muslim, A. Ali, M. Ahmad, A. Alarifi, M. Afzal, N. Sepa, N. Dege, J. Mol. Liq. 363, 119767 (2022). https://doi.org/10.1016/j.molliq.2022.119767

    Article  CAS  Google Scholar 

  6. Y. Thio, J.J. Vittal, Inorg. Chim. Acta 526, 120502 (2021). https://doi.org/10.1016/j.ica.2021.120502

    Article  CAS  Google Scholar 

  7. N. Bandopadhyay, K. Paramanik, P.K. Mudi, G. Sarkar, M. Kotakonda, M. Shit, B. Biswas, H.S. Das, Polyhedron 218, 115783 (2022). https://doi.org/10.1016/j.poly.2022.115783

    Article  CAS  Google Scholar 

  8. S. Roy, T. Dutta, M.G.B. Drew, S. Chattopadhyay, Chattopadhyay. Polyhedron 178, 114311 (2020). https://doi.org/10.1016/j.poly.2019.114311

    Article  CAS  Google Scholar 

  9. M.I. Ayad, Arab. J. Chem. 9, S1297–S1306 (2016). https://doi.org/10.1016/j.arabjc.2012.02.007

    Article  CAS  Google Scholar 

  10. S. Bittner, Amino Acids 30, 205–224 (2006). https://doi.org/10.1007/s00726-005-0298-2

    Article  CAS  PubMed  Google Scholar 

  11. A.M. Mayer, E. Hareli, Phytochem. 18, 193–215 (1979). https://doi.org/10.1016/0031-9422(79)80057-6

    Article  CAS  Google Scholar 

  12. F. Taranto, A. Pasqualone, G. Mangini, P. Tripodi, M.M. Miazzi, S. Pavan, C. Montemurro, Int. J. Mol. Sci. 18, 377 (2017). https://doi.org/10.3390/ijms18020377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. Rompel, H. Fischer, K. Dirk Meiwes, R.D. Büldt-Karentzopoulos, F. Tuczek, B. Herbert Witzel, JBIC 4(1), 56–63 (1999). https://doi.org/10.1007/s007750050289

    Article  CAS  PubMed  Google Scholar 

  14. Y. Jiang, J. Fu, G. Zauberman, Y. Fuchs, J. Sci Food. Agric. 79, 950–954 (1999)

    Article  CAS  Google Scholar 

  15. C. Eicken, B. Krebs, J.C. Sacchettini, Curr. Opin. Struct. Biol. 9, 677–683 (1999). https://doi.org/10.1016/S0959-440X(99)00029-9

    Article  CAS  PubMed  Google Scholar 

  16. C.E. Barry III., P.G. Nayar, T.P. Begley, J. Am. Chem. Soc. 110, 3333–3334 (1988). https://doi.org/10.1021/ja00218a072

    Article  CAS  Google Scholar 

  17. R.B. Womer, Eur. J. Cancer 33, 2230–2236 (1997)

    Article  CAS  PubMed  Google Scholar 

  18. S. Faber, JAMA 198, 826–836 (1966). https://doi.org/10.1001/jama.1966.03110210076025

    Article  Google Scholar 

  19. E. Katz, H. Weissbach, J. Biol. Chem. 237, 666–675 (1963)

    Article  Google Scholar 

  20. C.E. Barry III., P.G. Nayar, T.P. Begley, Biochem. 28, 6323–6333 (1989). https://doi.org/10.1021/bi00441a026

    Article  CAS  Google Scholar 

  21. J.C. Freeman, P.G. Nayar, T.P. Begley, J.J. Villafranca, Biochem. 32, 4826–4830 (1993). https://doi.org/10.1021/bi00069a018

    Article  CAS  Google Scholar 

  22. N.P. Jayaweera, A.E. Hall, A.A. Wilson, M.E. Konkle, K.A. Wheeler, Semeniuc. Inorg. Chim. Acta 506, 119507 (2020). https://doi.org/10.1016/j.ica.2020.119507

    Article  CAS  Google Scholar 

  23. N. Boussalah, R. Touzani, I. Bouabdallah, S. El Kadiri, S. Ghalem, J. Mol. Catal. A: Chem. 306, 113–117 (2009). https://doi.org/10.1016/j.molcata.2009.02.031

    Article  CAS  Google Scholar 

  24. I. Bouabdallah, R. Touzani, I. Zidane, A. Ramdani, J. Iran. Chem. Soc. 4(3), 299–303 (2007). https://doi.org/10.1007/BF03245978

    Article  CAS  Google Scholar 

  25. A. Mouadili, A. Attayibat, S. El Kadiri, S. Radi, R. Touzani, Appl. Catal. A-Gen. 454, 93–99 (2013). https://doi.org/10.1016/j.apcata.2013.01.011

    Article  CAS  Google Scholar 

  26. H. allali, Y. kaddouri, El. Yousfi, M. El Kodadi, R. Touzani, J. Appl. Sci. Envir. Stud. 2(1) (2019) 13-29

  27. A. Jana, P. Brandão, H. Jana, A.D. Jana, G. Mondal, P. Bera, A. Santra, A.K. Mahapatra, P. Bera, J. Coord. Chem. Rev. 72(16), 2636–2653 (2019). https://doi.org/10.1080/00958972.2019.1658192

    Article  CAS  Google Scholar 

  28. E.C. Constable, P.J. Steel, J. Coord. Chem. Rev. 93, 205–223 (1989). https://doi.org/10.1016/0010-8545(89)80016-5

    Article  CAS  Google Scholar 

  29. D.A. House, P.J. Steel, A.A. Watson, J. Chem. Soc. Chem Communicat (1987). https://doi.org/10.1039/c39870001575

    Article  Google Scholar 

  30. W.L. Driessen, R.A.G. de Graaff, W.G.R. Wiesmeijer, Acta. Cryst. C43, 2319–2321 (1987). https://doi.org/10.1107/S0108270187087912

    Article  CAS  Google Scholar 

  31. S. Trofimenko, Chem. Rev. 93, 943–980 (1993). https://doi.org/10.1021/cr00019a006

    Article  CAS  Google Scholar 

  32. I. Bertini, G. Lanini, C. Luchinat, C. Haas, W. Maret, M. Zeppezauer, Eur. Biophys. J. 14, 431–439 (1987). https://doi.org/10.1007/BF00254867

    Article  CAS  PubMed  Google Scholar 

  33. L.-J. Huang, S.-C. Kuo, K. Jih-Pyang Wang, H.N. Ishii, J. Chem. Pharm. Bull. 42(10), 2036–2041 (1994). https://doi.org/10.1248/cpb.42.2036

    Article  CAS  Google Scholar 

  34. Y. Kaddouri, F. Abrigach, N. Mechbal, Y. Karzazi, M. El Kodadi, A. Aouniti, R. Touzani, Mater. Today: Proceed. 13, 956–963 (2019). https://doi.org/10.1016/j.matpr.2019.04.060

    Article  CAS  Google Scholar 

  35. A. Boulouiz, I. Hajji, Y. Kaddouri, K. Zaidi, R. Touzani, B. Hammouti, Mater. Today: Proceed. 31, S190–S196 (2020). https://doi.org/10.1016/j.matpr.2020.08.273

    Article  CAS  Google Scholar 

  36. S. Shin, S. Nayab, H. Lee, Polyhedron 141, 309–321 (2017). https://doi.org/10.1016/j.poly.2017.12.021

    Article  CAS  Google Scholar 

  37. N. Bouroumane, M. El Kodadi, R. Touzani, M. El Boutaybi, A. Oussaid, B. Hammouti, A.B.D. Nandiyanto, Arab. J. Sci. Eng. 47, 269–279 (2021). https://doi.org/10.1007/s13369-021-05343-x

    Article  CAS  Google Scholar 

  38. F. Abrigach, Y. Karzazi, R. Benabbes, M. El Youbi, M. Khoutoul, N. Taibi, N. Karzazi, N. Benchat, M. Bouakka, E. Saalaoui, R. Touzani, Med. Chem. Res. 26, 1784–1795 (2017). https://doi.org/10.1007/s00044-017-1888-8

    Article  CAS  Google Scholar 

  39. E.I. Solomon, U.M. Sudaram, T.E. Machonkin, Chem. Rev. 96, 2563–2605 (1996). https://doi.org/10.1021/cr950046o

    Article  CAS  PubMed  Google Scholar 

  40. A. Mouadili, S. Chtita, A. El Ouafi, M. Bouachrine, A. Zarrouk, R. Touzani, J. Mater. Environ. Sci. 7(1), 210–221 (2016)

    CAS  Google Scholar 

  41. M.A. Motin, M.A. Uddin, P.K. Dhar, M.A.H. Mia, M.A. Hashem, Port. Electrochim. Acta 35(2), 103–116 (2017). https://doi.org/10.4152/pea.201702103

    Article  CAS  Google Scholar 

  42. S. Shahrokhian, A. Hamzehloei, Electrochem. Commun. 5(8), 706–710 (2003). https://doi.org/10.1016/S1388-2481(03)00170-X

    Article  CAS  Google Scholar 

  43. D. Nematollahi, M. Rafiee, L. Fotouhi, J. Iran. Chem. Soc. 6(3), 448–476 (2009). https://doi.org/10.1007/BF03246523

    Article  CAS  Google Scholar 

  44. P.J. O’Brien, D. Herschlag, Catalytic promiscuity and the evolution of new enzymatic activities. Chem. Biol. 6(4), R91–R1055 (1999)

    Article  PubMed  Google Scholar 

  45. A. Ercan, H.I. Park, Li-June Ming, A “Moonlighting” Dizinc Aminopeptidase from Streptomyces griseus: Mechanisms for Peptide Hydrolysis and the 4_1010-Fold Acceleration of the Alternative Phosphodiester Hydrolysis. Biochem. 45, 13779–13793 (2006). https://doi.org/10.1021/bi061086x

    Article  CAS  Google Scholar 

  46. L. Cariati, M. Oliverio, G. Mutti, S. Bonacci, T. Knaus, P. Costanzo, A. Procopio, Hydrolases-mediated transformation of oleuropein into demethyloleuropein. Bioorg. Chem. 84, 384–388 (2019). https://doi.org/10.1016/j.bioorg.2018.12.005

    Article  CAS  PubMed  Google Scholar 

  47. M.R. Malachowski, B. Dorsey, J.G. Sackett, R.S. Kelly, A.L. Ferko, R.N. Hardin, Effect of ligand donors on the catalytic properties of metal-complexes - copper(ii) complexes as catalysts for the oxidation of 3,5-di-tert-butylcatechol. Inorg. Chim. Acta 249(1996), 85–92 (1996). https://doi.org/10.1016/0020-1693(96)05026-8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdeslam Mouadili.

Ethics declarations

Conflict of interest

The authors have no conflict of interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutaybi, M.E., Mouadili, A., Oussaid, A. et al. Spectroscopic and electrochemical study of biomimetic catecholase and phenoxazinone synthase activities of in situ complexes bearing pyrazolic ligands. J IRAN CHEM SOC 20, 961–976 (2023). https://doi.org/10.1007/s13738-022-02729-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02729-y

Keywords

Navigation