Skip to main content
Log in

Herbal synthesis of integrated binary-semiconductor nanocomposites of silver doped CuO with ZnO/SnO2 for antibacterial activities and photocatalytic degradation of organic dyes

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Sida rhombifolia leaf extract was used to synthesize heterostructured nanocomposites Ag@CuO/ZnO and Ag@CuO/SnO2 by sol–gel combustion method followed by calcination. Through this ecofriendly approach, we could minimize the utilization of toxic chemicals as the bioactive components present in the plant extract act as capping and complexing agents. XRD studies indicated the formation of various crystalline phases of the congeners of the heterostructured nanocomposites. FESEM studies revealed irregular aggregates for AZC of particle size between 100 and 500 nm whereas uniformly arranged distorted spheres for ASC. The UV-DRS spectra helped to assess the reduced band gap energy from tau plot. The PL emission peaks of ZnO and SnO2 point towards the crystal defects in their lattices. The as-prepared ternary nanocomposites have resistivity to the growth of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeroginosa, Streptococcus mutans and Staphylococcus aureus with greater inhibition zones which showed their superior antibacterial activity. They are proved to be excellent photocatalysts for the degradation of hazardous organic dyes into harmless products and reduction of aromatic compounds into useful chemicals. Thus, the facile, low-cost and environmentally sustainable green synthesis provides Ag@CuO/ZnO and Ag@CuO/SnO2 nanocomposites with multifunctional efficacy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Zhang, J.H. Bang, C. Tang, P.V. Kamat, ACS Nano 4, 1 (2010)

    Article  Google Scholar 

  2. G. Krithika, R. Saraswathy, M. Muralidhar, D. Thulasi, N. Lalitha, P. Kumararaja, A. Nagavel, R. Arun Balaji, R. Jayavel, J. Nanosci. Nanotechnol. 17(8), 5209–5216 (2017). https://doi.org/10.1166/jnn.2017.13846

    Article  CAS  Google Scholar 

  3. M. Hojamberdiev, G. Zhu, P. Sujaridworakun, S. Jinawath, P. Liu and J. P. Zhou, Powder Technol., vol. 218, X (2012)

  4. S.G. Ebbinghaus, H.P. Abicht, R. Dronskowski, T. Müller, A. Reller, A. Weidenkaff, Prog. Solid State Chem. 37, 2–3 (2009)

    Article  Google Scholar 

  5. K.R. Gopidas, M. Bohorquez, P.V. Kamat, J. Phys. Chem. 94, 16 (1990)

    Google Scholar 

  6. Z. L. Liu, J. C. Deng, J. J. Deng and F. F. Li, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 150, 99 (2008)

  7. Y.T. Woo, D.Y. Lai, Patty’s Toxicol. 2, 104 (2012)

    Google Scholar 

  8. M. Nasrollahzadeh, M. Atarod, S.M. Sajadi, Appl. Surf. Sci. 364, 636 (2016)

    Article  CAS  Google Scholar 

  9. M. Nakagawa, D.G. Crosby, J. Agric. Food Chem. 22, 5 (1974)

    Google Scholar 

  10. R. Dai, J. Chen, J. Lin, S. Xiao, S. Chen, Y. Deng, J. Hazard. Mater. 170, 1 (2009)

    Article  Google Scholar 

  11. K. Elumalai and S. Velmurugan, Appl. Surf. Sci.345 (2015)

  12. Y. Liu, Chinese. J. Catal. 38, 1052 (2017)

    CAS  Google Scholar 

  13. S. Vadivel, G. Rajarajan, J. Mater. Sci. Mater. Electron. 26, 3155 (2015)

    Article  CAS  Google Scholar 

  14. X. Yin, W. Que, D. Fei, F. Shen, Q. Guo, J. Alloys Compd. 524, 13 (2012)

    Article  CAS  Google Scholar 

  15. K. Mageshwari, R. Sathyamoorthy, J. Park, Powder Technol. 278, 150 (2015)

    Article  CAS  Google Scholar 

  16. Y.C. Zhang, L. Yao, G. Zhang, D.D. Dionysiou, J. Li, X. Du, Appl. Catal. B Environ. 144, 730 (2014)

    Article  CAS  Google Scholar 

  17. H. Wang, S. Kalytchuk, H. Yang, L. He, C. Hu, Y. Teohc and Andrey L. Rogach , Nanoscale. 6:11 (2014)

  18. G. Lu, A. Linsebigler, J.T. Yates, J. Phys. Chem. 99, 19 (1995)

    Google Scholar 

  19. Q. Gu, J. Long, H. Zhuang, C. Zhang, Y. Zhou, X. Wang, Phys. Chem. Chem. Phys. 16, 24 (2014)

    Google Scholar 

  20. C. Wang, J. Zhao, W. Xinming, B. Mai, S. Guoying, P. Peng, J. Fu, Appl. Catal. B Environ. 39, 3 (2002)

    Google Scholar 

  21. L. Zheng, Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, J. Zhu, Inorg. Chem. 48, 5 (2009)

    Article  Google Scholar 

  22. P. Nazari, F. Ansari, B. AbdollahiNejand, V. Ahmadi, M. Payandeh, M. Salavati-Niasari, J. Phys. Chem. C 121(40), 21935–21944 (2017). https://doi.org/10.1021/acs.jpcc.7b07061

    Article  CAS  Google Scholar 

  23. R. Georgekutty, M.K. Seery, S.C. Pillai, J. Phys. Chem. C. 112, 35 (2008)

    Article  Google Scholar 

  24. A.T. Babu, R. Antony, J. Environ. Chem. Eng. 7, 1 (2019)

    Article  Google Scholar 

  25. A. Mangaiyarkarasi and M. H. M. Ilyas, Int. J. Curr. Res. Biosci. Plant Biol. 2015, 8 (2015)

  26. J. Lu, H. Wang, S. Dong, F. Wang, Y. Dong, J. Alloys Compd. 617, 869 (2014)

    Article  CAS  Google Scholar 

  27. M.H. Sayadi, S. Ghollasimood, N. Ahmadpour, S. Homaeigohar, J. Photochem. Photobiol. A: Chem. 425, 113662 (2022)

    Article  CAS  Google Scholar 

  28. C. Mondal, J. Pal, M. Ganguly, A.K. Sinha, J. Jana, T. Pal, New J. Chem. 38, 7 (2014)

    Google Scholar 

  29. Z. Miao, Y. Wu, X. Zhang, Z. Liu, B. Han, K. Ding, G. An, J. Mater. Chem. 17, 18 (2007)

    Article  Google Scholar 

  30. S.A. Khan, F. Noreen, S. Kanwal, A. Iqbal, G. Hussain, Mater. Sci. Eng. C. 82, 46 (2018)

    Article  CAS  Google Scholar 

  31. M. Hosseini-Sarvari, F. Moeini, New J. Chem. 38, 2 (2014)

    Article  Google Scholar 

  32. M.J. Chithra, M. Sathya, K. Pushpanathan, Acta Metall. Sin. 28, 3 (2015)

    Google Scholar 

  33. S. Sarmah, A. Kumar, Indian. J. Phys. 84, 1211 (2010)

    CAS  Google Scholar 

  34. E. Romanova, A. Melnikov, Y. Kuzutkina, V. Shiryaev, S. Guizard, A. Mouskeftaras, Int (Conf. Math. Methods Electromagn. Theory, MMET, 2012), pp. 521–526

    Google Scholar 

  35. N. Ahmadpour, M.H. Sayadi, S. Sobhani, M. Hajiani, J. Clean. Prod. 268, 122023 (2020)

    Article  CAS  Google Scholar 

  36. S. Vijayalakshmi, S. Venkataraj, M. Subramanian, R. Jayavel, J. Phys. D. Appl. Phys. 41, 3 (2008)

    Google Scholar 

  37. G. Feng, W. Shu, L. Meng, C. Xiu, L. Su, Z.G. Dong, Y. Duo, J. Cryst. Growth 262, 1–4 (2004)

    Article  Google Scholar 

  38. E.J.H. Lee, C. Ribeiro, T.R. Giraldi, E. Longo, E.R. Leite, J.A. Varela, Appl. Phys. Lett. 84, 10 (2004)

    Article  Google Scholar 

  39. M.H. Sayadi, S. Homaeigohar, A. Rezaei, H. Shekari, Environ Sci Pollut Res. 28, 15236 (2021)

    Article  CAS  Google Scholar 

  40. T. Arai, M. Yanagida, Y. Konishi, Y. Iwasaki, H. Sugihara, K. Sayama, Catal. Commun. 9, 6 (2008)

    Article  Google Scholar 

  41. G. Ravi, M. Sarasija, D. Ayodhya, Nano Convergence. 6, 12 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  42. W. Shan, Y. Hu, M. Zheng, C. Wei, Dalt. Trans. 44, 16 (2015)

    Google Scholar 

  43. L. Zhang, Y. Jiang, Y. Ding, N. Daskalakis, L. Jeuken, M. Povey, A.J.O. Neill, D.W. York, J. Nanoparticle Res. 12, 5 (2010)

    Google Scholar 

  44. A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad, Nano-Micro Lett. 7, 3 (2015)

    Article  Google Scholar 

  45. M.H. Sayadi, N. Ahmadpour, S. Homaeigohar, Nanomaterials 11, 2 (2021)

    Article  Google Scholar 

  46. D. Das, B. Chandra, P. Phukon and S. Kumar, Colloids Surfaces B Biointerfaces, 101 (2013)

  47. M. Abdollahi, M. Rezaei, G. Farzi, Int. J. Food Sci. Technol. 47, 4 (2012)

    Article  Google Scholar 

  48. D. Longano, N. Ditaranto, N. Cioffi, F. Di Niso, T. Sibillano, A. Ancona, A. Conte, M.A. Del Nobile, L. Sabbatini, L. Torsi, Anal. Bioanal. Chem. 403, 4 (2012)

    Article  Google Scholar 

  49. M. Raffi, S. Mehrwan, T.M. Bhatti, J.I. Akhter, A. Hameed, W. Yawar, M.M. Hasan, Ann. Microbiol. 60, 1 (2010)

    Article  Google Scholar 

  50. A. Azam, A. S. Ahmed, M. Oves, M. S. Khan and A. Memic, Int. J. Nanomedicine, 7 (2012)

  51. J.A. Lemire, J.J. Harrison, R.J. Turner, Nat. Rev. Microbiol. 11, 6 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. Sujith, Associate professor, National Institute of Technology, Calicut, Kerala for supporting us to carry out the antibacterial work successfully. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosy Antony.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, A.T., Antony, R. Herbal synthesis of integrated binary-semiconductor nanocomposites of silver doped CuO with ZnO/SnO2 for antibacterial activities and photocatalytic degradation of organic dyes. J IRAN CHEM SOC 19, 4503–4513 (2022). https://doi.org/10.1007/s13738-022-02618-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02618-4

Keywords

Navigation