Skip to main content
Log in

Synthesis, self-assembly and photophysical properties of AIEE-active triphenylamine-based discotic liquid crystals

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A series of triphenylamine-based discotic liquid crystals (DLCs) containing three α-cyanostilbene units and a central triphenylamine were designed and prepared using Suzuki coupling and Knoevenagel reaction. Polarized optical microscopy, differential scanning calorimetry and X-ray diffraction were employed to investigate the textures, phase transition temperatures and self-assembly structures, demonstrating that all the compounds exhibit Colsqu/p4mm phase. The only Colsqu/p4mm phase could be observed with elongation of terminal alkyl chains, which might be attributed to the central propeller-shaped triphenylamine unit and α-cyanostilbene units with different configurations. These DLCs displayed temperature-dependent emission behavior and high fluorescence intensity even in isotropic state. Interestingly, these DLCs are insensitive for 365 nm UV light in bulk state, whereas sensitive in solution state. Distinct positive solvatochromism in different organic solvents and aggregation-induced enhanced emission (AIEE) behavior in tetrahydrofuran-H2O mixtures could be observed due to the intramolecular charge transfer (ICT) and twisted configuration induced by triphenylamine and α-cyanostilbene units, respectively. The optimized geometry and spatial distribution of the HOMO and LUMO obtained from density functional theory calculations well demonstrated ICT and twisted conformation. Therefore, this work will provide a rational molecular design strategy to construct AIEE-active liquid crystals with excellent properties and wide potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Cravotto, P. Cintas, Chem. Soc. Rev. 38(9), 2684–2697 (2009). https://doi.org/10.1039/B901840A

    Article  CAS  PubMed  Google Scholar 

  2. X.D. Yu, L.M. Chen, M.M. Zhang et al., Chem. Soc. Rev. 43(15), 5346–5371 (2014). https://doi.org/10.1039/C4CS00066H

    Article  CAS  PubMed  Google Scholar 

  3. E.K. Fleischmann, R. Zentel, Angew. Chem. Int. Ed. 52(34), 8810–8827 (2013). https://doi.org/10.1002/anie.201300371

    Article  CAS  Google Scholar 

  4. S.A. Jenekhe, J.A. Osaheni, Science 265, 765–768 (1994). https://doi.org/10.1126/science.265.5173.765

    Article  CAS  PubMed  Google Scholar 

  5. Y.J. Cho, K.S. Yook, J.Y. Lee, Adv. Mater. 26(38), 6642–6646 (2014). https://doi.org/10.1002/adma.201402188

    Article  CAS  PubMed  Google Scholar 

  6. B.S. Kim, J.Y. Lee, Adv. Funct. Mater. 24(25), 3970–3977 (2014). https://doi.org/10.1002/adfm.201303730

    Article  CAS  Google Scholar 

  7. J.D. Luo, Z.L. Xie, J. Lam et al., Chem. Commun. 18, 1740–1741 (2001). https://doi.org/10.1039/B105159H

    Article  Google Scholar 

  8. B.K. An, S.K. Kwon, S.D. Jung et al., J. Am. Chem. Soc. 124(48), 14410–14415 (2002). https://doi.org/10.1021/ja0269082

    Article  CAS  PubMed  Google Scholar 

  9. Y. Hong, J.W.Y. Lam, B.Z. Tang, Chem. Soc. Rev. 40(11), 5361–5388 (2011). https://doi.org/10.1039/C1CS15113D

    Article  CAS  PubMed  Google Scholar 

  10. J.W. Chen, C.C. Law, J.W.Y. Lam, Chem. Mater. 15(7), 1535–1546 (2003). https://doi.org/10.1021/cm021715z

    Article  CAS  Google Scholar 

  11. D.Y. Fan, D. Wang, T. Han et al., ACS Appl. Polym. Mater. (2022). https://doi.org/10.1021/acsapm.1c01476

    Article  Google Scholar 

  12. Z. Zhao, W. He, B.Z. Tang, Acc. Mater. Res. 2(12), 1251–1260 (2021). https://doi.org/10.1021/accountsmr.1c00202

    Article  CAS  Google Scholar 

  13. K.S.S. Kumar, Y.R. Girish, M. Ashrafizadeh et al., Coord. Chem. Rev. 447, 214135 (2021). https://doi.org/10.1016/j.ccr.2021.214135

    Article  CAS  Google Scholar 

  14. J. Li, J.X. Wang, H.X. Li et al., Chem. Soc. Rev. 49(4), 1144–1172 (2020). https://doi.org/10.1039/C9CS00495E

    Article  CAS  PubMed  Google Scholar 

  15. T.Y. Wu, J.B. Huang, Y. Yan, Chem. Asian J. 14(6), 730–750 (2019). https://doi.org/10.1002/asia.201801884

    Article  CAS  PubMed  Google Scholar 

  16. L. Zhang, X.F. Wang, T.Y. Wang et al., Small 11(9–10), 1025–1038 (2015). https://doi.org/10.1002/smll.201402075

    Article  CAS  PubMed  Google Scholar 

  17. C. Tschierske, Angew. Chem. Int. Ed. 52(34), 8828–8878 (2013). https://doi.org/10.1002/anie.201300872

    Article  CAS  Google Scholar 

  18. T. Wöhrle, I. Wurzbach, J. Kirres et al., Chem. Rev. 116(3), 1139–1241 (2016). https://doi.org/10.1021/acs.chemrev.5b00190

    Article  CAS  PubMed  Google Scholar 

  19. H.K. Bisoyi, S. Kumar, Chem. Soc. Rev. 39(1), 264–285 (2010). https://doi.org/10.1039/B901792P

    Article  CAS  PubMed  Google Scholar 

  20. R. Wang, Y. Xiao, J.X. Lei, Chem. Eng. J. 390, 124586 (2020). https://doi.org/10.1016/j.cej.2020.124586

    Article  CAS  Google Scholar 

  21. H.T. Nguyen, C. Destrade, J. Malthête, Adv. Mater. 9(5), 375–388 (1997). https://doi.org/10.1002/adma.19970090503

    Article  CAS  Google Scholar 

  22. C. Tschierske, J. Mater. Chem. 11(11), 2647–2671 (2001). https://doi.org/10.1039/B102914M

    Article  CAS  Google Scholar 

  23. S.J.D. Lugger, S.J.A. Houben, Y. Foelen et al., Chem. Rev. 122(5), 4946–4975 (2022). https://doi.org/10.1021/acs.chemrev.1c00330

    Article  CAS  PubMed  Google Scholar 

  24. D.W. Bruce, Acc. Chem. Res. 33(12), 831–840 (2000). https://doi.org/10.1021/ar990159k

    Article  CAS  PubMed  Google Scholar 

  25. C. Zou, J. Wang, M. Wang et al., Small 14(21), 1800557 (2018). https://doi.org/10.1002/smll.201800557

    Article  CAS  Google Scholar 

  26. V. Halleux, J.P. Calbert, P. Brocorens et al., Adv. Funct. Mater. 14(7), 649–659 (2004). https://doi.org/10.1002/adfm.200400006

    Article  CAS  Google Scholar 

  27. S. Diring, F. Camerel, B. Donnio et al., J. Am. Chem. Soc. 131(50), 18177–18185 (2009). https://doi.org/10.1021/ja908061q

    Article  CAS  PubMed  Google Scholar 

  28. J.J. Miao, L. Zhu, Chem. Mater. 22(1), 197–206 (2010). https://doi.org/10.1021/cm902731u

    Article  CAS  Google Scholar 

  29. R.L. Zhang, H.F. Gao, Y.M. Ren et al., Chem. Asian J. 13(5), 536–544 (2018). https://doi.org/10.1002/asia.201701666

    Article  CAS  PubMed  Google Scholar 

  30. A. Concellón, M. Marcos, P. Romero et al., Angew. Chem. Int. Ed. 56(5), 1259–1263 (2017). https://doi.org/10.1002/anie.201611017

    Article  CAS  Google Scholar 

  31. R.L. Zhang, H.F. Gao, J. Yu et al., J. Mol. Liq. 298(15), 112079 (2020). https://doi.org/10.1016/j.molliq.2019.112079

    Article  CAS  Google Scholar 

  32. D.R. Vinayakumara, H. Ulla, S. Kumar et al., J. Mater. Chem. C 6(27), 7385–7399 (2018). https://doi.org/10.1039/C8TC01737A

    Article  CAS  Google Scholar 

  33. B. Mu, Y. Zhao, X.H. Quan, A.C.S. Appl, Mater. Interfaces 12(8), 9637–9645 (2020). https://doi.org/10.1021/acsami.9b20769

    Article  CAS  Google Scholar 

  34. H.T. Bui, J. Kim, H.J. Kim et al., J. Phys. Chem. C 120(47), 26695–26702 (2016). https://doi.org/10.1021/acs.jpcc.6b10026

    Article  CAS  Google Scholar 

  35. J. De, M.M.A. Haseeb, R.A.K. Yadav et al., Chem. Commun. 56(91), 14279–14282 (2020). https://doi.org/10.1039/D0CC05813K

    Article  CAS  Google Scholar 

  36. Y.L. Xiao, R.Z. Zuo, X.T. Liu et al., Soft Mater. 20(1), 12–23 (2022). https://doi.org/10.1080/1539445X.2021.1909063

    Article  CAS  Google Scholar 

  37. A. Schultz, S. Diele, S. Laschat et al., Adv. Funct. Mater. 11(6), 441–446 (2001). https://doi.org/10.1002/1616-3028(200112)11:6%3c441::AID-ADFM441%3e3.0.CO;2-8

    Article  CAS  Google Scholar 

  38. J.H. Kim, S. Cho, B.K. Cho, Chem Eur. J. 20(40), 12734–12739 (2014). https://doi.org/10.1002/chem.201403297

    Article  CAS  PubMed  Google Scholar 

  39. H. Lee, J. Sohn, J. Hwang et al., Chem. Mater. 16(3), 456–465 (2004). https://doi.org/10.1021/cm0343756

    Article  CAS  Google Scholar 

  40. M. Sonntag, K. Kreger, D. Hanft et al., Chem. Mater. 17(11), 3031–3039 (2005). https://doi.org/10.1021/cm047750i

    Article  CAS  Google Scholar 

  41. H. Li, M. Fang, R. Tang et al., J. Mater. Chem. A 4(42), 16403–16409 (2016). https://doi.org/10.1039/C6TA07655F

    Article  CAS  Google Scholar 

  42. Y. Domoto, E. Busseron, M. Maaloum et al., Chem. Eur. J. 21(5), 1938–1948 (2015). https://doi.org/10.1002/chem.201405567

    Article  CAS  PubMed  Google Scholar 

  43. J.C. Hindson, B. Ulgut, R.H. Friend et al., J. Mater. Chem. 20(5), 937–944 (2010). https://doi.org/10.1039/B919159C

    Article  CAS  Google Scholar 

  44. K.C. Majumdar, N. Pal, P. Debnath et al., Tetrahedron Lett. 48(36), 6330–6333 (2007). https://doi.org/10.1016/j.tetlet.2007.07.026

    Article  CAS  Google Scholar 

  45. K.C. Majumdar, B. Chattopadhyay, P.K. Shyam et al., Tetrahedron Lett. 50(49), 6901–6905 (2009). https://doi.org/10.1016/j.tetlet.2009.09.140

    Article  CAS  Google Scholar 

  46. K.C. Majumdar, S. Mondal, N. De et al., Tetrahedron Lett. 51(3), 521–524 (2010). https://doi.org/10.1016/j.tetlet.2009.11.066

    Article  CAS  Google Scholar 

  47. R.R. Reghu, J. Simokaitiene, J.V. Grazulevicius et al., Dyes Pigm. 115, 135–142 (2015). https://doi.org/10.1016/j.dyepig.2014.12.013

    Article  CAS  Google Scholar 

  48. Y.J. Wang, H.S. Sheu, C.K. Lai, Tetrahedron 63(7), 1695–1705 (2007). https://doi.org/10.1016/j.tet.2006.11.058

    Article  CAS  Google Scholar 

  49. M.M. Fang, J. Yang, Q.Y. Liao, J. Mater. Chem. C 5(38), 9879–9885 (2017). https://doi.org/10.1039/C7TC03641H

    Article  CAS  Google Scholar 

  50. Y.L. Xiao, X.T. Liu, Q.Y. He, Soft Mater. 18(4), 499–507 (2020). https://doi.org/10.1080/1539445X.2020.1737119

    Article  CAS  Google Scholar 

  51. R.Z. Zuo, S.W. Wang, Y.D. Pang et al., Dyes Pigm. 188, 109153 (2021). https://doi.org/10.1016/j.dyepig.2021.109153

    Article  CAS  Google Scholar 

  52. X.T. Liu, B.Y. Shen, R.Z. Zuo et al., J. Mol. Liq. 340(15), 116892 (2021). https://doi.org/10.1016/j.molliq.2021.116892

    Article  CAS  Google Scholar 

  53. Y.L. Xiao, X.P. Tan, W. Xing et al., J. Mater. Chem. C 6(40), 10782–10792 (2018). https://doi.org/10.1039/C8TC04040K

    Article  CAS  Google Scholar 

  54. Y.D. Pang, Y.L. Xiao, X.T. Liu et al., Tetrahedron 96(10), 132384 (2021). https://doi.org/10.1016/j.tet.2021.132384

    Article  CAS  Google Scholar 

  55. S.J. Yoon, J.H. Kim, K.S. Kim et al., Adv. Funct. Mater. 22(1), 61–66 (2012). https://doi.org/10.1002/adfm.201101818

    Article  CAS  Google Scholar 

  56. J.W. Chung, S.J. Yoon, B.K. An et al., J. Phys. Chem. C 117(21), 11285–11291 (2013). https://doi.org/10.1021/jp401440s

    Article  CAS  Google Scholar 

  57. L.L. Zhu, X. Li, Q. Zhang et al., J. Am. Chem. Soc. 135(13), 5175–5182 (2013). https://doi.org/10.1021/ja400456h

    Article  CAS  PubMed  Google Scholar 

  58. A.X. Ding, L.M. Yang, Y.Y. Zhang et al., Chem Eur. J. 20(38), 12215–12222 (2014). https://doi.org/10.1002/chem.201402790

    Article  CAS  PubMed  Google Scholar 

  59. Z.R. Grabowski, K. Rotkiewicz, Chem. Rev. 103(10), 3899–4032 (2003). https://doi.org/10.1021/cr940745l

    Article  PubMed  Google Scholar 

  60. Z.E. Chen, Q.L. Qi, H. Zhang, Spectrochim Acta Part A 238(5), 118384 (2020). https://doi.org/10.1016/j.saa.2020.118384

    Article  CAS  Google Scholar 

  61. C. ReichardtM, Chem. Rev. 94(8), 2319–2358 (1994). https://doi.org/10.1021/cr00032a005

    Article  Google Scholar 

  62. J.P. Cerón-Carrasco, D. Jacquemin, C. Laurence et al., J. Phys. Org. Chem. 27(6), 512–518 (2014). https://doi.org/10.1002/poc.3293

    Article  CAS  Google Scholar 

  63. H.H. Lin, Y.C. Chan, J.W. Chen et al., J. Mater. Chem. 21(9), 3170–3177 (2011). https://doi.org/10.1039/C0JM02942D

    Article  CAS  Google Scholar 

  64. C. Bayrak, H. Senol, S. Sirtbasi et al., Tetrahedron 74(40), 5839–5849 (2018). https://doi.org/10.1016/j.tet.2018.07.060

    Article  CAS  Google Scholar 

  65. H. Auweter, H. Haberkorn, W. Heckmann et al., Angew. Chem. Int. Ed. 38(15), 2188–2191 (1999). https://doi.org/10.1002/(SICI)1521-3773(19990802)38:15%3c2188::AID-ANIE2188%3e3.0.CO;2-%23

    Article  CAS  Google Scholar 

  66. X.Q. Zhang, Z.G. Chi, B.J. Xu et al., Chem. Commun. 48(88), 10895–10897 (2012). https://doi.org/10.1039/C2CC36263E

    Article  CAS  Google Scholar 

  67. X.T. Liu, R.Z. Zuo, Y.D. Pang et al., Liq. Cryst. 48(13), 1897–1907 (2021). https://doi.org/10.1080/02678292.2021.1907625

    Article  CAS  Google Scholar 

  68. X.Q. Zhang, Z.G. Chi, H.Y. Li et al., Chem Asian J. 6(3), 808–811 (2011). https://doi.org/10.1002/asia.201000802

    Article  CAS  PubMed  Google Scholar 

  69. J.Y. Zhao, J. Peng, P. Chen et al., Dyes Pigm. 149, 276–283 (2018). https://doi.org/10.1016/j.dyepig.2017.10.007

    Article  CAS  Google Scholar 

  70. Y. Wang, J. Liu, W. Yuan et al., Dyes Pigm. 167, 135–142 (2019). https://doi.org/10.1016/j.dyepig.2019.04.015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by China West Normal University Doctor Startup Fund (No: 412821), Major project fund of Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province (No: CSPC202101) and Scientific Research Fund Project of Yunnan Provincial Department of Education (No. 2021J0011). We thank beamline 1W2A at Beijing Synchrotron Radiation Facility (BSRF), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuhua Li or Yulong Xiao.

Ethics declarations

Conflict of interest

There are no conflict of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16262 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, N., Pang, Y. et al. Synthesis, self-assembly and photophysical properties of AIEE-active triphenylamine-based discotic liquid crystals. J IRAN CHEM SOC 19, 4411–4421 (2022). https://doi.org/10.1007/s13738-022-02611-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02611-x

Keywords

Navigation