Skip to main content
Log in

A novel pyrazoline-based fluorescence probe armed by pyrene and naphthol system for the selective detection of Cu2+ and its biological application

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A photo-induced electron transfer cationic fluorescence probe L1 based on pyrene-naphthol system was designed to detect the change of Cu2+ with fluorescence. The probe L1 was found to selectively recognize Cu2+ in aqueous ethanol solution [10.0 mmol/L HEPES, pH 7.4, EtOH–H2O = 1:1 (v/v)] without interference from other coexisting metal ions. The response of the sensor to Cu2+ is transient and reversible, and anions generally have no impact on the selectivity of Cu2+. Probe L1 forms complex with Cu2+ in 1:1 ratio as supported by Job’s plot analysis. The binding constants of Cu2+ was calculated to be 6.322 × 104 L/mol using a nonlinear curve-fitting method. The detection limit of Cu2+ was determined to be 1.620 × 10–7 mol/L. The energy gap between HOMO and LUMO in L1 and L1–Cu2+ was calculated by density functional theory as 3.76 eV and 2.71 eV, respectively. In addition, the probe L1 has extremely low cytotoxicity and can be used for living cell imaging studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Scheme 2

Similar content being viewed by others

References

  1. Z. Fang, D. Chen, J. Xu et al., A multi-photon fluorescence “on-off-on” probe based on organotin (IV) complex for high-sensitive detection of Cu2+. Sens. Actuators B Chem. (2022). https://doi.org/10.1016/j.snb.2022.131423

    Article  Google Scholar 

  2. A. As, A. Immo, A. Mh et al., A novel fluorescent sensor for fast and highly selective turn-off detection of Fe3+ in water and pharmaceutical samples using synthesized azopyrazole-benzenesulfonamide derivative. J. Mol. Struct. 1225, 129175 (2020). https://doi.org/10.1016/j.molstruc.2020.129175

    Article  CAS  Google Scholar 

  3. C.M. Pang, S.H. Luo, K. Jiang et al., A dual-channel sensor containing multiple nitrogen heterocycles for the selective detection of Cu2+, Hg2+ and Zn2+ in same solvent system by different mechanism. Dyes Pigm. 170, 107651 (2019). https://doi.org/10.1016/j.dyepig.2019.107651

    Article  CAS  Google Scholar 

  4. M. Budri, R. Vadavi, P. Kadolkar et al., Selective and sensitive optical probe for the recognition of Zn (II) ion through turn-on optical response in aqueous medium: experimental and theoretical approach. Polyhedron 197(4), 115046 (2021). https://doi.org/10.1016/j.poly.2021.115046

    Article  CAS  Google Scholar 

  5. A.L. Balachandran, A. Deepthi, C.V. Suneesh, Tetrasubstituted cyclopentenone-based fluorescent chemosensors for the selective detection of Fe3+ and Cu2+ ions. Luminescence 35(1), 62–68 (2020). https://doi.org/10.1002/bio.3695

    Article  CAS  PubMed  Google Scholar 

  6. J.Y. Dong, Y.F. Liu, J.F. Hu et al., A novel ferrocenyl-based multichannel probe for colorimetric detection of Cu(II) and reversible fluorescent “turn-on” recognition of Hg(II) in aqueous environment and living cells. Sens. Actuators B Chem. 255(1), 952–962 (2017). https://doi.org/10.1016/j.snb.2017.08.134

    Article  CAS  Google Scholar 

  7. M.E. Shirbhate, Y. Jeong, G. Ko et al., Selective fluorescent recognition of Zn2+ by using chiral binaphthol-pyrene probes. Dyes Pigm. 167, 29–35 (2019). https://doi.org/10.1016/j.dyepig.2019.03.063

    Article  CAS  Google Scholar 

  8. C. Lim, H. Seo, J.H. Choi et al., Highly selective fluorescent probe for switch-on Al3+ detection and switch-off F- detection. J. Photochem. Photobiol. A. 356, 312–320 (2018). https://doi.org/10.1016/j.jphotochem.2018.01.012

    Article  CAS  Google Scholar 

  9. C.Z. Yang, Y.C. Liu, C. Xu et al., A sensitive fluorescent sensor based on the photoinduced electron transfer mechanism for cefixime and ctDNA. J. Mol. Recognit. 33(3), 2816 (2020). https://doi.org/10.1002/jmr.2816

    Article  CAS  Google Scholar 

  10. D. Herrera-Ochoa, P.J. Pacheco-Lián, I. Bravo et al., A novel quantum dot-based pH probe for long-term fluorescence lifetime imaging microscopy experiments in living cells. Dyes Pigm. 14(2), 2578–2586 (2022). https://doi.org/10.1021/acsami.1c19926

    Article  CAS  Google Scholar 

  11. Y. Cao, L. Wang, Z. Liu et al., Theoretical study on the sensing mechanism of chalcone-based fluorescence probe for detecting hydrogen sulfide and biothiols. New J. Chem. 45(36), 16906–16912 (2021). https://doi.org/10.1039/D1NJ03052C

    Article  CAS  Google Scholar 

  12. Y. Gao, S. Xu, Z. Liu et al., Dual-emission fluorescence probe based on CdTe quantum dots and rhodamine B for visual detection of mercury and its logic gate behavior. Micromachines 12(6), 713 (2021). https://doi.org/10.3390/mi12060713

    Article  PubMed  PubMed Central  Google Scholar 

  13. G. Lian, K. Hu, Y. Wang et al., Base on spectroscopic properties response fluorescence probe for rapid, sensitive and selective detection of aluminum ions in wastewater. Inorg. Chem. Commun. 137, 109171 (2022). https://doi.org/10.1016/j.inoche.2021.109171

    Article  CAS  Google Scholar 

  14. A. Mjg, H.A. Yun, A. Jqx et al., Near-infrared fluorescence probe with a large stokes shift for selectively imaging of hydrogen peroxide in living cells and in vivo. Dyes Pigm. 197, 109930 (2021). https://doi.org/10.1016/j.dyepig.2021.109930

    Article  CAS  Google Scholar 

  15. A. Yg, A. Lc, A. Qw et al., A novel [1,2,4] triazolo [1,5-a] pyrimidine derivative as a fluorescence probe for specific detection of Fe3+ ions and application in cell imaging. Anal. Chim. Acta. 1187, 339168 (2021). https://doi.org/10.1016/j.aca.2021.339168

    Article  CAS  Google Scholar 

  16. B. Feng, H. Niu, H. Zhai et al., In-situ hydrophobic environment triggering reactive fluorescence probe to real-time monitor mitochondrial DNA damage. Front. Chem. Sci. Eng. 16, 92–102 (2022). https://doi.org/10.1007/s11705-021-2063-9

    Article  CAS  Google Scholar 

  17. R. Manivannan, J. Ryu, Y.A. Son, A quinoline carboxamide based fluorescent probe’s efficient recognition of aluminium ion and its application for real time monitoring. Text. Coloration Finish. 32(4), 185–192 (2020). https://doi.org/10.5764/TCF.2020.32.4.185

    Article  Google Scholar 

  18. A.E. Egorov, A.A. Kostyukov, I.E. Borissevitch et al., Photoinduced electron transfer from electron donor to bis-carbocyanine dye in excited triplet state. Mendeleev Commun. 31(1), 68–69 (2021). https://doi.org/10.1016/j.mencom.2021.01.020

    Article  CAS  Google Scholar 

  19. E. Bozkurt, H.I. Gul, A novel pyrazoline-based fluorometric “turn-off” sensing for Hg2+. Sens. Actuators B Chem. 255(1), 814–825 (2018). https://doi.org/10.1016/j.snb.2017.08.062

    Article  CAS  Google Scholar 

  20. A. De, S. Bala, S. Saha et al., Lanthanide clusters of phenanthroline containing pyridine-pyrazole based ligand: magnetism and cell imaging. Dalton Trans. 50(10), 3593–3609 (2021). https://doi.org/10.1039/D0DT04122J

    Article  CAS  PubMed  Google Scholar 

  21. A. Zl, A. Sl, D. Hl et al., BODIPY-based rapid response fluorescence probe for sensing and bioimaging endogenous superoxide anion in living cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 269, 120766 (2021). https://doi.org/10.1016/j.saa.2021.120766

    Article  CAS  Google Scholar 

  22. M. Rangasamy, K. Palaninathan, A pyrazoline-based fluorescent chemosensor for Al3+ ion detection and live cell imaging. New J. Chem. 42(13), 10891–10897 (2018). https://doi.org/10.1039/C8NJ01211C

    Article  CAS  Google Scholar 

  23. R.R. Varma, J.G. Pandya, F.U. Vaidya et al., Biological activities of pyrazoline-indole based Re(I) carbonyls: DNA interaction, antibacterial, anticancer, ROS production, lipid peroxidation, in vivo and in vitro cytotoxicity studies. Chem. Biol. Interact. 330, 109231 (2020). https://doi.org/10.1016/j.cbi.2020.109231

    Article  CAS  PubMed  Google Scholar 

  24. Y.P. Zhang, J.M. Ma, Y.S. Yang et al., Synthesis of nitrogen-doped graphene quantum dots (N-GQDs) from marigold for detection of Fe3+ ion and bioimaging. Spectrochim. Acta A Mol. Biomol. Spectrosc. 217, 60–67 (2019). https://doi.org/10.1016/j.saa.2019.03.044

    Article  CAS  PubMed  Google Scholar 

  25. Y. Zhang, Y.T. Xiao, Y.J. Zhang et al., Carbon quantum dots as fluorescence turn-off-on probe for detecting Fe3+ and ascorbic acid. J. Nanosci. Nanotechnol. 20(6), 3340–3347 (2021). https://doi.org/10.1166/jnn.2020.17412

    Article  CAS  Google Scholar 

  26. N. Upadhyay, K. Tilekar, F. Loiodice et al., Pharmacophore hybridization approach to discover novel pyrazoline-based hydantoin analogs with anti-tumor efficacy. Bioorg. Chem. 107, 104527 (2021). https://doi.org/10.1016/j.bioorg.2020.104527

    Article  CAS  PubMed  Google Scholar 

  27. H. Parveen, R.A.S. Alatawi, M.A. Alsharif et al., Novel pyrazoline-based organometallic compounds containing ferrocenyl and quinoline units: synthesis, characterization and microbial susceptibilities. Appl. Organomet. Chem. 32(4), 4257 (2018). https://doi.org/10.1002/aoc.4257

    Article  CAS  Google Scholar 

  28. S.B. Subramaniyan, S.B. Annes, M. Yuvasri et al., 1,3,5-Triphenylpyrazoline based fluorescent probe for selective sensing and imaging of glutathione in live cell under oxidative stress. ChemistrySelect 5(2), 515–521 (2020). https://doi.org/10.1002/slct.201904169

    Article  CAS  Google Scholar 

  29. Y. Zhang, X. Zheng, L. Zhang et al., Red fluorescent pyrazoline-BODIPY nanoparticles for ultrafast and long-term bioimaging. Org. Biomol. Chem. 18(4), 707–714 (2020). https://doi.org/10.1039/C9OB02373A

    Article  CAS  PubMed  Google Scholar 

  30. Y.P. Zhang, Y.Y. Dong, Y.S. Yang et al., A new pyrazoline-based probe of quenched fluorescent reversible recognition for Cu2+ and its application in cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 177, 147–152 (2017). https://doi.org/10.1016/j.saa.2017.01.042

    Article  CAS  PubMed  Google Scholar 

  31. S. Kim, H. Lee, J.B. Chae et al., A pyrene-mercapto-based probe for detecting Ag+ by fluorescence turn-on. Inorg. Chem. Commun. 118, 108044 (2020). https://doi.org/10.1016/j.inoche.2020.108044

    Article  CAS  Google Scholar 

  32. J. Mou, H. Qi, R. Xiang et al., A novel fluorescence sensor for relay recognition of zinc ion and nitric oxide through fluorescence “off-on-off” functionality. New J. Chem. 45(6), 2958–2966 (2021). https://doi.org/10.1039/D0NJ05018K

    Article  CAS  Google Scholar 

  33. I.E. Safaa, E. Mansour, I.F. Nassar et al., Synthesis of some new pyrazoline-based thiazole derivatives and evaluation of their antimicrobial, antifungal, and anticancer activities. Russ. J. Org. Chem. 46(3), 382–392 (2020). https://doi.org/10.1134/S1068162020030061

    Article  Google Scholar 

  34. K.V. Sashidhara et al., Designing, synthesis of selective and high-affinity chalcone-benzothiazole hybrids as Brugia malayi thymidylate kinase inhibitors: in vitro validation and docking studies. Eur. J. Med. Chem. 103, 418–428 (2015). https://doi.org/10.1016/j.ejmech.2015.09.004

    Article  CAS  PubMed  Google Scholar 

  35. J.S. Lindsey, M. Taniguchi, D.F. Bocian et al., The fluorescence quantum yield parameter in Förster resonance energy transfer (FRET)—meaning, misperception, and molecular design. Chem. Phys. Rev. (2021). https://doi.org/10.1063/5.0041132

    Article  Google Scholar 

  36. X. Zhang, Z. Wang, Z. Guo et al., A novel turn-on fluorescent probe for selective sensing and imaging of glutathione in live cells and organisms. Analyst 144(10), 3260–3266 (2019). https://doi.org/10.1039/C9AN00115H

    Article  CAS  PubMed  Google Scholar 

  37. Y. Wang, R. Guo, X. Hou et al., Highly sensitive and selective fluorescent probe for detection of Fe3+ based on rhodamine fluorophore. J. Fluoresc. 29(3), 645–652 (2019). https://doi.org/10.1007/s10895-019-02378-0

    Article  CAS  PubMed  Google Scholar 

  38. H. Zhang, N. Qin, Z. Fang, A novel dicyanoisophorone-based ratiometric fluorescent probe for selective detection of cysteine and its bioimaging application in living cells. Molecules 23(2), 475 (2018). https://doi.org/10.3390/molecules23020475

    Article  CAS  PubMed Central  Google Scholar 

  39. Y.S. Yang, C.M. Ma, Y.P. Zhang et al., A highly selective “turn-on” fluorescent sensor for zinc ion based on a cinnamyl pyrazoline derivative and its imaging in live cells. Anal. Methods 10(16), 1833–1841 (2018). https://doi.org/10.1039/C8AY00037A

    Article  CAS  Google Scholar 

  40. C. Varadaraju, M.S. Paulraj et al., Evaluation of metal ion sensing behaviour of fluorescent probe along with its precursors: PET-CHEF mechanism, molecular logic gate behaviour and DFT studies. J. Incl. Phenom. Macrocycl. Chem. 95, 79–89 (2019). https://doi.org/10.1007/s10847-019-00919-5

    Article  CAS  Google Scholar 

  41. Z.Y. Wu, Z.Y. Xu, H.Y. Tan et al., Two novel rhodamine-based fluorescent probes for the rapid and sensitive detection of Fe3+: experimental and DFT calculations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 213, 167–175 (2019). https://doi.org/10.1016/j.saa.2019.01.032

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun-Shang Yang or Ying-Peng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YS., Cao, JQ., Ma, CM. et al. A novel pyrazoline-based fluorescence probe armed by pyrene and naphthol system for the selective detection of Cu2+ and its biological application. J IRAN CHEM SOC 19, 3451–3461 (2022). https://doi.org/10.1007/s13738-022-02536-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02536-5

Keywords

Navigation