Skip to main content
Log in

Adsorption of copper from aqueous solutions by activated carbon prepared from peach wood

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Sorption properties of activated carbon prepared from peach wood by chemical activation with phosphoric acid toward copper ions were studied. The produced activated carbons were characterized by N2 adsorption, scanning electron microscopy, Boehm titration, potentiometric titration and Fourier transform infrared techniques. The highest surface area (588 m2/g) and total pore volume (0.19 cm3/g) were obtained at a carbonization temperature of 600 °C with an impregnation ratio of 1/1. We have found that the dependence of Cu2+ ions adsorption on their concentration in the solution on these carbons is adequately described by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm equations. The analysis of kinetic data indicates that the adsorption process is described by equations of mixed diffusion kinetics (with some predominance of external diffusion) and equations of pseudo-first- and pseudo-second-order models. Sorption kinetics describe of the ions under study shows that the pseudo-second-order equation allows describing experimental data with higher correlation coefficients R2. Study of the effect of the concentration of phosphoric acid used for chemical activation on the texture and sorption properties of the resulting carbons showed that the optimal concentration of H3PO4 was 20%. In the present study the numerical value of adsorption of the mean free energy is 13.36 kJ mol −1 which corresponds to ion-exchange process. Quantum-chemical calculations show that oxygen-containing (carboxyl, phenolic, carbonyl) surface groups and various phosphorus-containing groups participate in adsorption of copper ions on the carbons under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.L. Bohn, B.L. McNeal, G.A. Oconnor, Soil Chemistry (Wiley, New York, 1985)

    Google Scholar 

  2. H.B. Bradl, Heavy Metals in the Environment: Origin, Interaction and Remediation (Elsevier, Amsterdam, 2005)

    Google Scholar 

  3. E. Demirbas, N. Dizge, M.T. Sulak, M. Kobya, Chem. Eng. J. (2009). https://doi.org/10.1016/j.cej.2008.09.027

    Article  Google Scholar 

  4. S. Shakoor, A. Nasar, J. Taiwan Inst. Chem. Eng. 66, 154–163 (2016)

    Article  CAS  Google Scholar 

  5. M. Karimi-Nazarabad, H. Azizi-Toupkanloo, Functionalization of beet waste by cross-linking to attach amine groups for efficient sorption of reactive black 5 anionic dye. J. Iran. Chem. Soc. (2021). https://doi.org/10.1007/s13738-021-02398-3

    Article  Google Scholar 

  6. P.A. Alaba, Y.M. Sani, W.M.A.W. Daud, RSC Adv. 5, 101127–101147 (2015)

    Article  CAS  Google Scholar 

  7. A. Dizaj Khalili, A. Ghaemi, J. Iran. Chem. Soc. (2021). https://doi.org/10.1007/s13738-021-02248-2

    Article  Google Scholar 

  8. M.E. Olya, A. Pirkarami, M. Mirzaie, Chemosphere 91, 935–940 (2013)

    Article  CAS  Google Scholar 

  9. A. Jamsaz, E.K. Goharshadi, Process Saf. Environ. Prot. (2020). https://doi.org/10.1016/j.psep.2020.04.042

    Article  Google Scholar 

  10. A. Jamsaz, E.K. Goharshadi, A. Barras, M. Ifires, S. Szunerits, R. Boukherroub, Sep. Purif. Technol. (2021). https://doi.org/10.1016/j.seppur.2021.118931

    Article  Google Scholar 

  11. B. Samiey, C. Cheng, J. Wu, Materials (2014). https://doi.org/10.3390/ma7020673

    Article  PubMed  PubMed Central  Google Scholar 

  12. M. Goyal, V.K. Rattan, D. Aggarwal, R.C. Bansal, Colloid Surf. A. Physicchem. Eng. Aspects (2001). https://doi.org/10.1016/S0927-7757(01)00656-2

    Article  Google Scholar 

  13. N.D. Tumin, S.A. Rashi, A.L. Chuah, J. Eng. Sci. Technol. A 3, 180–189 (2008)

    Google Scholar 

  14. A.A. Basirun, M.A.M. Khudri, N.F. Yasid et al., J. Envion. Microbiol. Toxicol. A 9, 32–35 (2019)

    Article  Google Scholar 

  15. A. Macias-Garcia, M. Gomez Corzo, A.M. Dominguez et al., J. Hazard. Mater. 1, 21 (2017). https://doi.org/10.1016/j.jhazmat.2016.11.036

    Article  CAS  Google Scholar 

  16. A.J. Ahamed, V. Balakrishnan, S. Arivoli, Eur. J. Exp. Biol. A A 1, 23–37 (2011)

    Google Scholar 

  17. X. Gao, L. Wu, Q. Xu et al., Environ. Sci. Pollut. Res. (2018). https://doi.org/10.1007/s11356-017-1079-7

    Article  Google Scholar 

  18. S. Nouri, M.D.R. Abad, M. Bahram, J. Iran. Chem. Soc. (2012). https://doi.org/10.1007/s13738-011-0050-7

    Article  Google Scholar 

  19. M. Gomez-Tamayo, A. Macias-Garcia, M.A.D. Diez, E.M. Cuerda-Correa, J. Hazard. Mater. (2008). https://doi.org/10.1016/j.jhazmat.2007.08.012

    Article  Google Scholar 

  20. J. Jaramillo, V. Gomez-Serrano, P.M. Alvarez, J. Hazard. Mater. (2009). https://doi.org/10.1016/j.jhazmat.2008.04.009

    Article  PubMed  Google Scholar 

  21. S. Yadav, D.K. Tyagi, O.P. Yadav, J. Chem. Res. A 2011, 259–264 (2011)

    Google Scholar 

  22. A.M. Puzii, Teoret. Exp. Chem. (2011). https://doi.org/10.1007/s11237-011-9216-8

    Article  Google Scholar 

  23. D. Özçimen, A. Ersoy-Meriçboyu, J. Hazard. Mater. (2009). https://doi.org/10.1016/j.jhazmat.2009.02.148

    Article  PubMed  Google Scholar 

  24. P. Sentil Kumar, S. Ramalingam, V. Sathyaselvabala et al., Desalination (2011). https://doi.org/10.1016/j.desal.2010.08.003

    Article  Google Scholar 

  25. R. Mehrkhah, E.K. Goharshadi, M.M. Ghafurian, M. Mohammadi, O. Mahian, Clean water production by non-noble metal/reduced graphene oxide nanocomposite coated on wood: scalable interfacial solar steam generation and heavy metal sorption. Sol. Energy 224, 440–454 (2021)

    Article  CAS  Google Scholar 

  26. R. Mehrkhah, E.K. Goharshadi, M. Mohammadi, Highly efficient solar desalination and wastewater treatment by economical wood-based double-layer photoabsorbers. J. Ind. Eng. Chem. 101, 334–347 (2021)

    Article  CAS  Google Scholar 

  27. M. Karimi-Nazarabad, E.K. Goharshadi, R. Mehrkhah, M. Davardoostmanesh, Highly efficient clean water production: reduced graphene oxide/graphitic carbon nitride/wood. Sep. Purif. Technol. 279, 119788 (2021)

    Article  CAS  Google Scholar 

  28. D.I. Rabadanova, D.A. Sveshnikova, I.R. Akhmedov, M.M. Gafurov, M.G. Kakagasanov, Herald Dagestan State Univ. Ser. 1. Nat. Sci. 20, 19 (2019). https://doi.org/10.21779/2542-0321-2019-34-4-86-90 (in Russian)

    Article  Google Scholar 

  29. I.R. Akhmedov, M.M. Gafurov, M.G. Kakagasanov, D.A. Sveshnikova, D.I. Rabadanova, Sci. Instrum. Mak. (2018). https://doi.org/10.18358/np-28-4-i1519 (in Russian)

    Article  Google Scholar 

  30. H.P. Boehm, Adv. Catal. Relat. Sub. 16, 179–274 (1966)

    Article  CAS  Google Scholar 

  31. J.J.P. Stewart, J. Mol. Model (2007). https://doi.org/10.1007/s00894-007-0233-4

    Article  PubMed  PubMed Central  Google Scholar 

  32. J. Zawadzki, Infrared Spectroscopy in Surface Chemistry of Carbons, vol. 21 (Marcel Dekker, New York, 1988), pp. 141–369

    Google Scholar 

  33. A.M. Puziy, O.I. Poddubnaya, A. Martinez-Alonso, A. Castro-Muñiz, F. Suárez-Garcia, J.M.D. Tascon, Carbon (2007). https://doi.org/10.1016/j.carbon.2007.06.014

    Article  Google Scholar 

  34. L.J. Bellamy, The Infra-Red Spectra of Complex Molecules (Wiley, New York, 1954), p. 590

    Google Scholar 

  35. D.E.C. Corbridge, J. Appl. Chem. (1956). https://doi.org/10.1002/jctb.5010061007

    Article  Google Scholar 

  36. D.O. Cooney, Adsorption Design for Wastewater Treatment, vol. 190 (Lewis Publishers Boca Raton, New York, 1998)

    Google Scholar 

  37. S. Namasivayam, D. Sangeetha, Adsorption (2006). https://doi.org/10.1007/s10450-006-0373-3

    Article  Google Scholar 

  38. M. Imamoglu, O. Tekir, Desalination (2008). https://doi.org/10.1016/j.desal.2007.8.011

    Article  Google Scholar 

  39. S. Çay, A. Uyanık, A. Özaşık, Sep. Purif. Technol. (2004). https://doi.org/10.1016/j.seppur.2003.12.003

    Article  Google Scholar 

  40. N. Basci, E. Kocadagistan, B. Kocadagistan, Desalination (2008). https://doi.org/10.1016/S0011-9164(04)00172-9

    Article  Google Scholar 

  41. C.S. Zhu, L.P. Wang, W.B. Chen, J. Hazard Mater (2009). https://doi.org/10.1016/j.jhazmat.2009.02.085

    Article  PubMed  Google Scholar 

  42. Y.P. Kumar, P. King, V.S.R.K. Prasad, J. Hazard Mater (2006). https://doi.org/10.1016/j.jhazmat.2006.04.006

    Article  PubMed  Google Scholar 

  43. W.S. WanNgah, M.A.K.M. Hanafiah, J. Environ Sci (2008). https://doi.org/10.1016/S1001-0742(08)62205-6

    Article  Google Scholar 

  44. Sh. Lu, S.W. Gibb, Bioresour. Technol. (2008). https://doi.org/10.1016/j.biortech.2007.04.024

    Article  PubMed  Google Scholar 

  45. Y.S. Ho, C.T. Huang, H.W. Huang, Process. Biochem. (2002). https://doi.org/10.1016/S0032-9592(02)00036-5

    Article  Google Scholar 

  46. S.R. Shukla Roshan, S. Pai, Sep. Purif. Technol. (2005). https://doi.org/10.1016/j.seppur.2004.09.003

    Article  Google Scholar 

  47. M. Mukhopadhyay, S.B. Noronha, G.K. Suraishkumar, Bioresour. Technol. (2007). https://doi.org/10.1016/j.biortech.2006.06.025

    Article  PubMed  Google Scholar 

  48. E.V. Venitsianov, R.N. Rubinstein, M. Nauka, 237 (1983) (in Russian)

  49. Y.S. Ho, J.C.Y. Ng, G. McKay, Sep. Purif. Methods 1, 21 (2000). https://doi.org/10.1081/SPM-100100009

    Article  Google Scholar 

  50. Y. Ho, Water Res. (2006). https://doi.org/10.1016/j.watres.2005.10.040

    Article  PubMed  Google Scholar 

  51. RKh. Khamizov, D.A. Sveshnikova, A.E. Kucherova, L.A. Sinyaeva, Rus. J. Phys. Chem. (2018). https://doi.org/10.1134/S0036024418090121

    Article  Google Scholar 

  52. G. Hotova, V. Slovak, T. Zelenka, Sci Total Environ. (2020). https://doi.org/10.1016/j.scitotenv.2019.135436

    Article  PubMed  Google Scholar 

  53. S. Dastgheib, D.A. Rockstraw, Carbon (2001). https://doi.org/10.1016/S0008-6223(00)00315-8

    Article  Google Scholar 

  54. X. Yang, Y. Wan, Y. Zheng et al., Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.02.119

    Article  PubMed  PubMed Central  Google Scholar 

  55. G. Hotova, V. Slovak, O.S.G.P. Soares et al., Carbon (2018). https://doi.org/10.1016/j.carbon.2018.03.067

    Article  Google Scholar 

  56. T.A. Saleh, V.K. Gupta, A.A. Al-Saadi, J. Colloid Interface Sci. (2013). https://doi.org/10.1016/j.jcis.2013.01.037

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was carried out with the use of equipment of the Analytical Center of Collective Use at Dagestan Federal Research Center, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Sveshnikova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sveshnikova, D.A., Suleimanov, S.I., Rabadanova, D.I. et al. Adsorption of copper from aqueous solutions by activated carbon prepared from peach wood. J IRAN CHEM SOC 19, 3205–3214 (2022). https://doi.org/10.1007/s13738-022-02524-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-022-02524-9

Keywords

Navigation