Skip to main content

Advertisement

Log in

A delicate approach to the determination of duloxetine hydrochloride using electrospun polyvinylidene difluoride nanofibers

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A simple and delicate approach was developed for the determination of duloxetine hydrochloride using electrospun polyvinylidene difluoride (PVDF) nanofibers. Synthesis of PVDF-based electrospun nanofibers was monitored by ultraviolet visible (UV) spectrophotometer. The characterization was carried out by atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopy. AFM images showed that the size of synthesized PVDF electrospun nanofibers ranged in between 20 and 340 nm, while the presence of different functional groups was confirmed by FTIR spectroscopy. The synthesized PVDF electrospun nanofibers were applied for the determination of duloxetine hydrochloride. For the determination of duloxetine hydrochloride, a calibration of the standards of known concentration of duloxetine hydrochloride ranging from 1 to 10 mg/L in PVDF electrospun nanofibers solution against their UV absorbance was developed. Excellent regression coefficient (R2 = 0.994) was achieved from the linear calibration curve with 0.48 and 1.6 mg/L of LOD and LOQ, respectively. Results of the study clearly indicated that electrospun nanofibers obtained through PVDF could be used for an accurate determination of duloxetine hydrochloride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. S. Chen, B. Chen, Appl. Energy 184, 905 (2016). https://doi.org/10.1016/j.apenergy.2016.03.042

    Article  CAS  Google Scholar 

  2. S. Zhang, A. Kharrazi, D. Wang, H. Ren, S. Liang, Y. Yu, J. Clean. Prod. 275, 124199 (2020). https://doi.org/10.1016/j.jclepro.2020.124199

    Article  Google Scholar 

  3. N. Markovska, N. Duić, B.V. Mathiesen, Z. Guzović, A. Piacentino, H. Schlör, H. Lund, Energy 115, 1504 (2016). https://doi.org/10.1016/j.energy.2016.10.086

    Article  Google Scholar 

  4. A. Momblanch, L. Papadimitriou, S.K. Jain, A. Kulkarni, C.S.P. Ojha, A.J. Adeloyee, I.P. Holman, Sci. Total Environ. 655, 35 (2019)

    Article  CAS  PubMed  Google Scholar 

  5. A. Momblanch, L. Papadimitriou, S.K. Jain, A. Kulkarni, C.S.P. Ojha, A.J. Adeloye, I.P. Holman, Sci. Total Environ. 655, 35 (2019). https://doi.org/10.1016/j.scitotenv.2018.11.045

    Article  CAS  PubMed  Google Scholar 

  6. H. Yu, C.N. Chiu, J. Clean. Prod. 295, 126234 (2021). https://doi.org/10.1016/j.jclepro.2021.126234

    Article  Google Scholar 

  7. M.M. Kamila, N. Mondal, L.K. Ghosh, Pharmazie 62, 414 (2007)

    CAS  PubMed  Google Scholar 

  8. C. Kuang, Y. Sun, B. Li, R. Fan, J. Zhang, Y. Yao, Z. He, Asian J. Pharm. Sci. 12, 216 (2017). https://doi.org/10.1016/j.ajps.2016.08.007

    Article  PubMed  Google Scholar 

  9. H. Enomoto, S. Fujikoshi, T. Tsuji, N. Sasaki, H. Tokuoka, Y. Uchio, J. Orthop. Sci. 23, 1019 (2018). https://doi.org/10.1016/j.jos.2018.07.008

    Article  PubMed  Google Scholar 

  10. M. Yunoos, D.G. Sankar, B.P. Kumar, S. Hameed, E J Chem. 7, 785 (2010)

    Article  CAS  Google Scholar 

  11. S.P. Senthamil, K.V. Gowda, U. Mandal, S.W.D. Sam, T.K. Pal, J. Chromatogr. B Anal. Technol. Biomed. Life. Sci. 858, 269 (2007)

    Article  Google Scholar 

  12. D.C. Reddy, A.T. Bapuji, V.S. Rao, V. Himabindu, R.D. Rama, S. Syedba, H.L.V. Ravikiran, E J. Chem. 9, 899 (2011)

    Article  Google Scholar 

  13. N. Kumar, D. Sangeetha, P. Balakrishna, Pharm. Methods 2, 161 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  14. K.U. Chhalotiya, K.K. Bhatt, D.A. Shah, S.L. Baldania, Sci. Pharm. 78, 857 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. V.R. Sinha, A.R. Kumria, J.R. Bhinge, J. Chromatogr. Sci. 47, 589 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. P.A. Datar, R.U. Waghmare, J. Taibah Univ. Sci. 8(4), 357 (2014)

    Article  Google Scholar 

  17. S. Pankaj, T.T. Mariappan, U.C. Banerjee, Talanta 67, 975 (2005). https://doi.org/10.1016/j.jtusci.2014.06.001

    Article  Google Scholar 

  18. P.P. Dahivelkar, V.K. Redasani, S.B. Bari, J. Glob. Pharma Technol. 2, 19 (2010)

    CAS  Google Scholar 

  19. S.S. Dhaneshwar, P. Deshpande, M. Patil, G. Vadnerkar, S.R. Dhaneshwar, J. Pharm. Sci. 70, 233 (2008)

    Google Scholar 

  20. S. Shahnawaz, A.W. Siddiqui, M.T. Masroor, V. Arora. Chromatogr. Res. Int. 2011 (2011)

  21. J.V. Traverso, G. Amariei, K. Boltes, M.Á. García, M.L. Marina, Sci. Total Environ. 670, 770 (2019). https://doi.org/10.1016/j.scitotenv.2019.03.208

    Article  CAS  Google Scholar 

  22. J.V. Traverso, G. Amariei, K. Boltes, M.Á. García, M.L. Marina, J. Hazard. Mater. 374, 203–210 (2019). https://doi.org/10.1016/j.jhazmat.2019.04.027

    Article  CAS  Google Scholar 

  23. E. Jia, M.G. Bartlett, Biomed. Chromatogr. 34, e4760 (2020)

  24. B. Deng, M. Yu, X. Yang, B. Zhang, L. Li, L. Xie, J. Li, X. Lu, J. Membr. Sci. 350, 252 (2010)

    Article  CAS  Google Scholar 

  25. Y.C. Chiang, Y. Chang, A. Higuchi, W.Y. Chen, R.C. Ruaan, J. Membr. Sci. 339, 151 (2009)

    Article  CAS  Google Scholar 

  26. W.Z. Lang, Z.L. Xu, H. Yang, W. Tong, J. Membr. Sci. 288, 123 (2007)

    Article  CAS  Google Scholar 

  27. J. Wei, G.S. Helm, N. Corner-Walker, X.L. Hou, Desalination 192, 252 (2006)

    Article  CAS  Google Scholar 

  28. Y.R. Wang, J. M. Zheng, G. Y. Ren, P. H. Zhang, C. Xu, Smart Mater. Struct. 20, 045009 (2011)

  29. J. Pu, X. Yan, Y. Jiang, C. Chang, L. Lin, Sens. Actuators A Phys. 164, 131 (2010)

    Article  CAS  Google Scholar 

  30. S.V. Felix, M. Bangaru, G. Nalathambi, D. Sangeetha, A.K. Selvam, Aerosol. Sci. Technol. 53, 196 (2019)

    Article  Google Scholar 

  31. A.A. Issa, M.A. Al-Maadeed, A.S. Luyt, D. Ponnamma, M.K. Hassan, C J. Carbon Res 3, 30 (2017). https://doi.org/10.3390/c3040030

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Tufail Hussain Sherazi.

Ethics declarations

Conflict of interest

The authors would like to declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatri, S., Sherazi, S.T.H., Khatri, Z. et al. A delicate approach to the determination of duloxetine hydrochloride using electrospun polyvinylidene difluoride nanofibers. J IRAN CHEM SOC 19, 2067–2074 (2022). https://doi.org/10.1007/s13738-021-02429-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02429-z

Keywords

Navigation