Skip to main content
Log in

Investigation of the mechanism and effect of temperature on the reaction of conversion of oxygenated compounds to gasoline over NH4-ZSM-5

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this article, the catalytic conversion of oxygenated compounds (methyl acetate and 4-heptanone) to gasoline has been studied over NH4-ZSM-5 catalyst (Si/Al = 80) at three temperatures of 250, 300, and 390 °C. To determine the crystalline structure and acid sites of the catalyst, X-ray diffraction analysis (XRD) and NH3-TPD analysis were used, respectively. Products selectivity became determined by a GC‐Mass spectrometer. Based on the NH3-TPD analysis, Brønsted acid sites at 390 °C are activating, which the maximum amount of conversion obtained at this temperature. Also, results showed that the distribution of hydrocarbons extremely dependent on the temperature of the reaction, which at 390 °C often products of the reaction include aromatic compounds, while at temperatures below 300 °C aliphatic and olefin compounds have been often produced. Finally, the results from the reaction showed that by controlling the reaction conditions, the amount percentage of benzene, toluene, and xylenes (BTX) compounds is significantly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Scheme 2
Fig. 8
Scheme 3
Fig. 9

Similar content being viewed by others

References

  1. V.I. Erofeev, I.S. Khomyakov, L.A. Egorova, Production of high-octane gasoline from straight-run gasoline on ZSM-5 modified zeolites. Theor. Found Chem Eng. 48, 1–76 (2004). https://doi.org/10.1134/S0040579514010023

    Article  CAS  Google Scholar 

  2. H. Song, N. Wang, H.-L. Song, F. Li, La–Ni modified S2O82−/ZrO2-Al2O3 catalyst in N-pentane hydroisomerization. Catal. Commun. 59, 61–64 (2015). https://doi.org/10.1016/J.Catcom.2014.09.037

    Article  CAS  Google Scholar 

  3. A. Galadima, R.P.K. Wells, J.A. Anderson, N-Alkane Hydro conversion over carbided molybdena supported on Sulfated Zirconia. Appl. Petrochem. Res. 1, 35–43 (2011). https://doi.org/10.1007/S13203-011-0004-0

    Article  Google Scholar 

  4. A. Galadima, O. Muraza, From synthesis gas production to methanol synthesis and potential upgrade to gasoline range hydrocarbons: a Review. J. Nat. Gas. Sci. Eng. 25, 303–316 (2015). https://doi.org/10.1016/J.Jngse.2015.05.012

    Article  CAS  Google Scholar 

  5. E. Kianfar, M. Salimi, B. Koohestani, Methanol to gasoline conversion over CuO/ZSM-5 catalyst synthesized and influence of water on conversion. Fine Chem. Eng. (2020). https://doi.org/10.37256/fce.122020499

    Article  Google Scholar 

  6. BP. BP statistical review of world energy. In Energy Economics. London, UK. (2019)

  7. N.A. Owen, O.R. Inderwildi, D.A. King, The status of conventional world oil reserves—hype or cause for concern? Energy Policy 38, 4743–4749 (2010). https://doi.org/10.1016/J.Enpol.2010.02.026

    Article  Google Scholar 

  8. E. Kianfar, M. Salimi, S. Hajimirzaee et al., Methanol to gasoline conversion over CuO/ZSM-5 catalyst synthesized using sonochemistry method. Int. J. Chem. React. Eng. 17, 1–10 (2019)

    CAS  Google Scholar 

  9. E. Kianfar, Synthesis and characterization of alpo4/zsm-5 catalyst for methanol conversion to dimethyl ether. Russ. J. Appl. Chem. 91, 1710–1720 (2018). https://doi.org/10.1134/S1070427218100208

    Article  Google Scholar 

  10. E. Kianfar, Recent advances in synthesized, properties, applications of nano-zeolites. J. Sol-Gel Sci. Technol. 91, 415–429 (2019). https://doi.org/10.1007/s10971-019-05012-4

    Article  CAS  Google Scholar 

  11. E. Kianfar, M. Salimi, V. Pirouzfar et al., Synthesis of modified catalyst and stabilization of CuO /NH4-ZSM-5 for conversion of methanol to gasoline. Int. J. Appl. Ceram. Technol. 15, 734–741 (2018). https://doi.org/10.1111/ijac.12830

    Article  CAS  Google Scholar 

  12. E. Kianfar, Comparison and assessment of zeolite catalysts performance dimethyl ether and light olefins production through methanol: a review. Rev. Inorg. Chem. 39, 157–177 (2019)

    Article  CAS  Google Scholar 

  13. J. Zhu, X. Meng, F. Xiao, Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion. Front. Chem. Sci. Eng. 7, 233–248 (2013). https://doi.org/10.1007/s11705-013-1329-2

    Article  CAS  Google Scholar 

  14. E. Kianfar, S. Hajimirzaee, S.S. Musavian, A.S. Mehr, Zeolite-based catalysts for methanol to gasoline process: a review. Microchem. J. (2020). https://doi.org/10.1016/j.microc.2020.104822

    Article  Google Scholar 

  15. J. Cejka, A. Corma, S. Zones, Zeolites and Catalysis: Synthesis Reactions and Applications (Wiley, London, 2010).

    Book  Google Scholar 

  16. R. Malhotra, Fossil Energy: Selected Entries from the Encyclopedia of Sustainability, Science and Technology (Springer, New York, 2012).

    Google Scholar 

  17. K.-C. Liang, F.-M. Yeh, C.-G. Wu, H.-M. Lee, Gasoline production by dehydration of dimethyl ether with NH4-ZSM-5 Catalyst. Energy Procedia 75, 554–559 (2015). https://doi.org/10.1016/j.egypro.2015.07.452

    Article  CAS  Google Scholar 

  18. P.H. Hoang, N.H. Chung, L.Q. Dien, Porous ZSM-5 zeolite catalyst modified with sulfonic acid functional groups for hydrolysis of biomass. J Iran Chem Soc 16, 2203–2210 (2019). https://doi.org/10.1007/s13738-019-01692-5

    Article  CAS  Google Scholar 

  19. P.H. Hoang, N.T. Nhung, L.Q. Dien, Synthesis of mesoporous Cr/ZSM-5 and W-Cr/ZSM-5 zeolite catalysts for oxidation of unsaturated fatty acid. AIP Adv. 7, 105311 (2017). https://doi.org/10.1063/1.4986310

    Article  CAS  Google Scholar 

  20. P.H. Hoang, N.V. Long, Application of magnetically recyclable ZSM-5 zeolite for enhancement of peroxide bleaching of thermal-mechanical. Cellul. Chem. Technol. 51, 447 (2017)

    CAS  Google Scholar 

  21. X. Wu, S. Xu, W. Zhang, J. Huang, J. Li, B. Yu, Y. Wei, Z. Liu, Revaling the direct mechanism of the first carbon-carbon bond formation in methanol to hydrocarbons process. Angew. Chem. (2017). https://doi.org/10.1002/ange.201703902

    Article  Google Scholar 

  22. A.D. Chowdhury, A.L. Paioni, K. Houben, G.T. Whiting, M. Baldus, B.M. Weckhuysen, Bridging the gap between the direct and hydrocarbon pool mechanisms of the methanol-to-hydrocarbons process. Angew. Chem. Int. Ed. (2018). https://doi.org/10.1002/anie.201803279

    Article  Google Scholar 

  23. M. Çağlayan, A. Lucini Paioni, E. Abou-Hamad, G. Shterk, A. Pustovarenko, M. Baldus, J. Gascon, Initial carbon− carbon bond formation during the early stages of methane dehydroaromatization. Angew. Chem. Int. Ed. 59, 16741–16746 (2020). https://doi.org/10.1002/anie.202007283

    Article  CAS  Google Scholar 

  24. A. Comas-Vives, M. Valla, C. Copret, P. Sautet, Cooperativity between al sites promotes hydrogen transfer and carbon–carbon bond formation upon dimethyl ether activation on alumina. ACS Cent. Sci. 1, 313–319 (2015). https://doi.org/10.1021/acscentsci.5b00226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. P.N. Plessow, F. Studt, Unraveling the mechanism of the initiation reaction of the methanol to olefins process using ab initio and DFT calculations. ACS Catal. 7, 7987–7994 (2017). https://doi.org/10.1021/acscatal.7b03114

    Article  CAS  Google Scholar 

  26. J. Li, Y. Wei, J. Chen, P. Tian, X. Su, S. Xu, Y. Qi, Q. Wang, Y. Zhou, Y. He, Z. Liu, Observation of heptamethylbenzenium cation over SAPO-type molecular sieve DNL-6 under real MTO conversion conditions. J. Am. Chem. Soc. 134, 836–839 (2012). https://doi.org/10.1021/ja209950x

    Article  CAS  PubMed  Google Scholar 

  27. S. Xu, A. Zheng, Y. Wei, J. Chen, J. Li, Y. Chu, M. Zhang, Q. Wang, Y. Zhou, J. Wang, F. Deng, Z. Liu, Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites. Angew. Chem. Int. Ed. 52, 11564–11568 (2013). https://doi.org/10.1002/anie.201303586

    Article  CAS  Google Scholar 

  28. J. Hassanpour, M. Zamani, H.A. Dabbagh, Effect of ketene additive and Si/Al ratio on the reaction of methanol over H-ZSM-5 Catalysts. Appl. Organomet. Chem. 32, E4133 (2017). https://doi.org/10.1002/Aoc.4133

    Article  Google Scholar 

  29. X. Wang, S. Ding, H. Wang, X. Liu, J. Han, Q. Ge, X. Zhu, Conversion of propionic acid and 3-pentanone to hydrocarbons on ZSM-5 Catalysts: reaction pathway and active site. Appl Catal A Gen 545, 79–89 (2017). https://doi.org/10.1016/J.Apcata.2017.07.037

    Article  CAS  Google Scholar 

  30. Z. Wan, W. Wu, G. Li, C. Wang, H. Yang, D. Zhang, Effect of SiO2/Al2O3 ratio on the performance of nanocrystal ZSM-5 Zeolite catalysts in methanol to gasoline conversion. Appl. Catal. A Gen. 523, 312–320 (2016). https://doi.org/10.1016/J.Apcata.2016.05.032

    Article  CAS  Google Scholar 

  31. K. Wang, J. Zhang, H. Shanks, B., & Brown, R. C. , Catalytic conversion of carbohydrate-derived oxygenates over H-ZSM-5 in a tandem micro-reactor system. Green Chem. 17, 557–564 (2015). https://doi.org/10.1039/C4gc01784f

    Article  CAS  Google Scholar 

  32. A.A. Rownaghi, F. Rezaei, J. Hedlund, Uniform mesoporous ZSM-5 single crystals catalyst with high resistance to coke formation for methanol deoxygenation. Microporous Mesoporous Mater. 151, 26–33 (2012). https://doi.org/10.1016/J.Micromeso.2011.11.020

    Article  CAS  Google Scholar 

  33. V. Ravinayagam, B. Rabindran Jermy, Fabricating hierarchical ZSM-5 to induct long chain antioxidant coenzyme Q10 for biomedical application. J. Saudi Chem. Soc. (2018). https://doi.org/10.1016/j.jscs.2018.09.001

    Article  Google Scholar 

  34. W. Feng, X. Gao, C. Ding, Y. Jia, J. Wang, K. Zhang, P. Liu, Effect of weak base modification on ZSM-5 catalyst for methanol to aromatics. Appl. Organomet. Chem. 31, E3625 (2016). https://doi.org/10.1002/Aoc.3625

    Article  Google Scholar 

  35. Z. Wan, W. Wu, W. Chen, H. Yang, D. Zhang, Direct synthesis of hierarchical ZSM-5 Zeolite and its performance in catalyzing methanol to gasoline conversion. Ind. Eng. Chem. Res. 53, 1941–1947 (2014). https://doi.org/10.1021/Ie5036308

    Article  Google Scholar 

  36. Z. Zahara, Y.K. Krisnandi, W. Wibowo, D.A. Nurani, D.U.C. Rahayu, H. Haerudin, Synthesis and characterization of hierarchical ZSM-5 zeolite using various templates as cracking catalysts. AIP Conf. Proc. (2018). https://doi.org/10.1063/1.5064085

  37. S.K. Jesudoss, J. Judith Vijaya, A. Anancia Grace, L. John Kennedy, S. Sivasanker, P. Kathirgamanathan, in Recent Trends in Materials Science and Applications, ed. by J. Ebenezar. Springer Proceedings in Physics, vol. 189 (Springer, 2017). https://doi.org/10.1007/978-3-319-44890-9_11

  38. F. Denardin, O.W. Perez-Lopez, Tuning the acidity and reducibility of Fe/ZSM-5 catalysts for methane dehydroaromatization. Fuel 236, 1293–1300 (2019). https://doi.org/10.1016/j.fuel.2018.09.128

    Article  CAS  Google Scholar 

  39. N. Habibi, H.A. Dabbagh, Mechanism study of the conversion of esters to high-octane-number aromatics over H-ZSM-5. Appl. Organometall. Chem. (2019). https://doi.org/10.1002/Aoc.4673

    Article  Google Scholar 

  40. J. Li, Y. Wei, Y. Qi, P. Tian, B. Li, Y. He, Z. Liu, Conversion of methanol over H-ZSM-22: the reaction mechanism and deactivation. Catal Today. 164, 288–292 (2011). https://doi.org/10.1016/J.Cattod.2010.10.095

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank to the Isfahan University of Technology research council for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Saeid Rostami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostami, M.S., Dabbagh, H.A. & Rostami, S. Investigation of the mechanism and effect of temperature on the reaction of conversion of oxygenated compounds to gasoline over NH4-ZSM-5. J IRAN CHEM SOC 19, 121–130 (2022). https://doi.org/10.1007/s13738-021-02291-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02291-z

Keywords

Navigation