Skip to main content

Advertisement

Log in

Facile refluxed synthesis of TiO2/Ag2O@Ti-BTC as efficient catalyst for photodegradation of methylene blue and electrochemical studies

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Due to unique properties, metal organic frameworks (MOFs) have attracted great research attention towards sustainable energy and environmental remediation. In this article, highly efficient TiO2@Ti(BTC) and TiO2/Ag2O@Ti(BTC) composites have been synthesized via in-situ incorporation of pre-synthesized TiO2 and TiO2/Ag2O into Ti-based MOF Ti(BTC) via facile refluxed method. All the synthesized samples have been successfully characterized by PXRD, SEM, EDX and UV-Visible spectroscopy. All these samples are used for study the photodegradation of methylene blue in aqueous solution under visible light irradiation. It has been found that incorporation of TiO2 NPs and TiO2/Ag2O nanocomposite into Ti(BTC) shifts the band gap towards more visible region, elevates the yield of O ∙–2 and OH∙– radicals and enhances the photodegradation efficiency of methylene blue in the presence of visible light. Amongst all the synthesized samples, TiO2/Ag2O@Ti(BTC) shows maximum photocatalytic activity towards photodegradation of methylene blue as compared to all other synthesized samples. It is observed that after 60 min, TiO2/Ag2O@Ti(BTC) shows minimum absorption of 0.02 as compared to TiO2 (0.17), TiO2/Ag2O (0.052), Ti(BTC) (0.32) and TiO2@Ti(BTC) (0.21). It reveals that methylene blue has been successfully degraded by synthesized samples and maximum activity has been shown by TiO2/Ag2O@Ti(BTC). Further, electrochemical water splitting activity of these samples has been studied. It has been found that TiO2/Ag2O@Ti(BTC) shows maximum catalytic activity towards both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). It generates maximum current density 97.15 and − 110 mA cm−2 towards both OER and HER, respectively, as compared to all other samples.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V. Katheresan, J. Kansedo, S.Y. Lau, Efficiency of various recent wastewater dye removal methods: a review. J. Environ. Chem. Eng. 6(4), 4676–4697 (2018)

    Article  CAS  Google Scholar 

  2. G.K. Gupta, H. Liu, P. Shukla, Pulp and paper industry–based pollutants, their health hazards and environmental risks. Curr. Opin. Environ. Sci. Health 12, 48–56 (2019)

    Article  Google Scholar 

  3. R.L. Singh, P.K. Singh, Global environmental problems, in Principles and Applications of Environmental Biotechnology for a Sustainable Future. (Springer, Singapore. 2017), pp. 13–41

  4. S. Bagheri, A.T. Yousefi, T.O. Do, Photocatalytic pathway toward degradation of environmental pharmaceutical pollutants: structure, kinetics and mechanism approach. Catal. Sci. Technol. 7(20), 4548–4569 (2017)

    Article  CAS  Google Scholar 

  5. W.W. Anku, M.A. Mamo, P.P. Govender, Phenolic compounds in water: sources, reactivity, toxicity and treatment methods. in Phenolic Compounds-Natural Sources, Importance and Applications. (2017), pp. 420–443

  6. S. Madhav, A. Ahamad, P. Singh, P.K. Mishra, A review of textile industry: wet processing, environmental impacts, and effluent treatment methods. Environ. Qual. Manag. 27(3), 31–41 (2018)

    Article  Google Scholar 

  7. S. Mani, P. Chowdhary, R.N. Bharagava, Textile wastewater dyes: toxicity profile and treatment approaches, in Emerging and Eco-Friendly Approaches for Waste Management. Springer, Singapore. (2019), pp. 219–244

  8. Y. Rasouli, M. Abbasi, S.A. Hashemifard, Investigation of in-line coagulation-MF hybrid process for oily wastewater treatment by using novel ceramic membranes. J. Clean. Prod. 161, 545–559 (2017)

    Article  CAS  Google Scholar 

  9. M. Kamali, D.P. Suhas, M.E. Costa, I. Capela, T.M. Aminabhavi, Sustainability considerations in membrane-based technologies for industrial effluents treatment. Chem. Eng. J. 368, 474–494 (2019)

    Article  CAS  Google Scholar 

  10. S. Jafarinejad, A comprehensive study on the application of reverse osmosis (RO) technology for the petroleum industry wastewater treatment. J. Water Environ. Nanotechnol. 2(4), 243–264 (2017)

    CAS  Google Scholar 

  11. N. Yahya, F. Aziz, N.A. Jamaludin, M.A. Mutalib, A.F. Ismail, W.N.W. Salleh, N.A. Ludin, A review of integrated photocatalyst adsorbents for wastewater treatment. J. Environ. Chem. Eng. 6(6), 7411–7425 (2018)

    Article  CAS  Google Scholar 

  12. Y. Fan, J. Wang, M. Zhao, Spontaneous full photocatalytic water splitting on 2D MoSe 2/SnSe 2 and WSe 2/SnSe 2 vdW heterostructures. Nanoscale 11(31), 14836–14843 (2019)

    Article  CAS  Google Scholar 

  13. A. Jabbar, M. Fiaz, S. Rani, M.N. Ashiq, M. Athar, Incorporation of CuO/TiO2 nanocomposite into MOF-5 for enhanced oxygen evolution reaction (OER) and photodegradation of organic dyes. J. Inorg. Organomet. Polym. Mater. 5, 92 (2020)

    Google Scholar 

  14. J. Yu, C. Mu, B. Yan, X. Qin, C. Shen, H. Xue, H. Pang, Nanoparticle/MOF composites: preparations and applications. Mater. Horiz. 4, 557–569 (2017)

    Article  CAS  Google Scholar 

  15. A. Dhakshinamoorthy, A.M. Asiri, H. Garcia, Metal organic frameworks as versatile hosts of Au nanoparticles in heterogeneous catalysis. ACS Catal. 7, 2896–2919 (2017)

    Article  CAS  Google Scholar 

  16. Q. Yang, Q. Xu, H.L. Jiang, Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chem. Soc. Rev. 46, 4774–4808 (2017)

    Article  CAS  Google Scholar 

  17. D.Y. Du, J.S. Qin, S.L. Li, Z.M. Su, Y.Q. Lan, Recent advances in porous polyoxometalate-based metal-organic framework materials. Chem. Soc. Rev. 43, 4615–4632 (2014)

    Article  CAS  Google Scholar 

  18. P. Falcaro, R. Ricco, A. Yazdi, I. Imaz, S. Furukawa, D. Maspoch, R. Ameloot, J.D. Evans, C.J. Doonan, Application of metal and metal oxide nanoparticles@MOFs. Coord. Chem. Rev. 307, 237–254 (2016)

    Article  CAS  Google Scholar 

  19. Y.V. Kaneti, S. Dutta, M.S. Hossain, M.J. Shiddiky, K.L. Tung, F.K. Shieh, Y. Yamauchi, Strategies for improving the functionality of zeolitic imidazolate frameworks: tailoring nanoarchitectures for functional applications. Adv. Mater. 29(38), 1700213 (2017)

    Article  Google Scholar 

  20. T. Kitao, Y. Zhang, S. Kitagawa, B. Wang, T. Uemura, Hybridization of MOFs and polymers. Chem. Soc. Rev. 46(11), 3108–3133 (2017)

    Article  CAS  Google Scholar 

  21. Z. Chen, J. Chen, Y. Li, Metal–organic-framework-based catalysts for hydrogenation reactions. Chin. J. Catal. 38, 1108–1126 (2017)

    Article  CAS  Google Scholar 

  22. X. Lian, Y. Fang, E. Joseph, Q. Wang, J. Li, S. Banerjee, C. Lollar, X. Wang, H.C. Zhou, Enzyme-MOF (metal-organic framework) composites. Chem. Soc. Rev. 46, 3386–3401 (2017)

    Article  CAS  Google Scholar 

  23. C. Wang, Y.V. Kaneti, Y. Bando, J. Lin, C. Liu, J. Li, Y. Yamauchi, Metal–organic framework-derived one-dimensional porous or hollow carbon-based nanofibers for energy storage and conversion. Mater. Horizons. 5(3), 394–407 (2018)

    Article  CAS  Google Scholar 

  24. C.C. Wang, X.D. Du, J. Li, X.X. Guo, P. Wang, J. Zhang, Photocatalytic Cr(VI) reduction in metal-organic frameworks: a mini-review. Appl. Catal. B Environ. 193, 198–216 (2016)

    Article  CAS  Google Scholar 

  25. Y.M. Zhang, T.L. Dai, F. Zhang, J. Zhang, G. Chu, C.S. Quan, Fe3O4@UiO-66-NH2 core-shell nanohybrid as stable heterogeneous catalyst for Knoevenagel condensation. Chin. J. Catal. 37, 2106–2113 (2016)

    Article  CAS  Google Scholar 

  26. F.P. Kinik, A. Uzun, S. Keskin, Ionic liquid/metal–organic framework composites: from synthesis to applications. ChemSusChem 10(14), 2842–2863 (2017)

    Article  CAS  Google Scholar 

  27. S. Verma, R.B. Baig, M.N. Nadagouda, R.S. Varma, Fixation of carbon dioxide into dimethyl carbonate over titanium-based zeoliticthiophene-benzimidazolate framework. Sci. Rep. 7, 655 (2017)

    Article  Google Scholar 

  28. S. Verma, R.B. Baig, M.N. Nadagouda, R.S. Varma, Titanium-based zeolitic imidazolate framework for chemical fixation of carbon dioxide. Green Chem. 18, 4855–4858 (2016)

    Article  CAS  Google Scholar 

  29. Y.X. Liu, Y.Y. Geng, M.Y. Yan, J. Huang, Stable ABTS immobilized in the MIL-100(Fe) metal-organic framework as an efficient mediator for laccase-catalyzed decolorization. Molecules 22, 920 (2017)

    Article  Google Scholar 

  30. C.D. Wu, M. Zhao, Incorporation of molecular catalysts in metal-organic frameworks for highly efficient heterogeneous catalysis. Adv. Mater. 29, 1605446 (2017)

    Article  Google Scholar 

  31. W. Li, T. Zeng, Preparation of TiO2 anatase nanocrystals by TiCl4 hydrolysis with additive H2SO4. PloS One 6, e21082 (2011)

    Article  CAS  Google Scholar 

  32. L. Bingkun, M. Lilong, H. Bing, Z. Jingtao, S. Hengzhen, Fabrication of TiO2/Ag2O heterostructure with enhanced photocatalytic and antimicrobial activities under visible light irradiation. Appl. Surf. Sci. 396, 1596–1603 (2017)

    Article  Google Scholar 

  33. M. Fiaz, M. Athar, S. Rani, M. Najam-ul-haq, M.A. Farid, One pot solvothermal synthesis of Co3O4@UiO-66 and CuO@UiO-66 for improved current densitytowards hydrogen evolution reaction. Mater. Chem. Phys. 239, 122320 (2020)

    Article  CAS  Google Scholar 

  34. W. Ying, C. Huiyong, X. Jing, L. Defei, L. Zewei, Q. Yu, X. Hongxia, Adsorptive separation of methanol-acetone on isostructural series of metal-organic frameworks M-BTC (M = Ti, Fe, Cu Co, Ru, Mo): a computational study of adsorption mechanisms and metal-substitution impacts. ACS Appl. Mater. Interfaces. 7, 26930–26940 (2015)

    Article  Google Scholar 

  35. M. Fiaz, M. Athar, Facile room temperature In-situ incorporation of transition-metal selenide (TMSe) nanoparticles into MOF-5 for oxygen evolution reaction. JOM 72, 2219–2225 (2020)

    Article  CAS  Google Scholar 

  36. M. Shafaee, E.K. Goharshadi, M. Mashreghi, M. Sadeghinia, TiO2 nanoparticles and TiO2@graphene quantum dots nanocomposites as effective visible/solar light photocatalysts. J. Photochem. Photobiol. A 357, 90–102 (2018)

    Article  CAS  Google Scholar 

  37. B. Rusinque, S. Escobedo, H.D. Lasa, Photoreduction of a Pd-doped mesoporous TiO2 photocatalyst for hydrogen production under visible light. Catalysts 10, 74 (2020)

    Article  CAS  Google Scholar 

  38. S. Mansingh, K.K. Das, A. Behera, S. Subudhi, S. Sultana, K. Parida, Bandgap engineering via boron and sulphur doped carbon modified anatase TiO2: a visible light stimulated photocatalyst for photo-fixation of N2 and TCH degradation. Nanoscale Adv. 2, 2004–2017 (2020)

    Article  CAS  Google Scholar 

  39. M.G. Ha, E.D. Jeong, M.S. Won, H.G. Kim, Electronic band structure and photocatalytic activity of M-Doped TiO2 (M = Co and Fe). J. Korean Phys. Soc. 49, S675–S679 (2006)

    CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Institute of Chemical Sciences, BZU, and Dr. Athar’s Research Lab for providing lab facilities for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Athar.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, H.M., Fiaz, M. & Athar, M. Facile refluxed synthesis of TiO2/Ag2O@Ti-BTC as efficient catalyst for photodegradation of methylene blue and electrochemical studies. J IRAN CHEM SOC 18, 1269–1277 (2021). https://doi.org/10.1007/s13738-020-02109-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-02109-4

Keywords

Navigation