Skip to main content
Log in

Macromolecular crystallization: basics and advanced methodologies

  • Review
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

For the first time, about 155 years ago and as a laboratory curiosity, German biologists observed the crystals of hemoglobin from worms and fishes. Since then, the crystallization of proteins, nucleic acids and big biological structures, like viruses, has been developed into a broad research field including several applications, for example in the drug discovery. This review is divided into four major sections. The first section addresses the specific physicochemical properties of biomolecular crystals accompanied by kinetics of supersaturation, nucleation and growth which are the three main steps required to achieve macromolecular crystals. Besides, various physical, chemical and biochemical parameters influencing the process of macromolecular crystallization are reviewed. The second part deals with classical approaches, such as vapor and batch diffusion methods, available to create macromolecular crystals. The third part overviews novel approaches including microgravity, cocrystallization, membrane-assisted crystallization and microfluidic array chips involved in more complicated techniques for growing macromolecular crystals and controlling their size and orientation. In the end, considering the very significant role of automation in providing biomolecules’ crystals in recent years, we provided a brief explanation about robotics and their importance in developing high-throughput crystallization. RDC-NMR and SAXS/WAXS hybrid methods with the aim of obtaining structural information of complex macromolecular assemblies are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A. Hospital, J.R. Goñi, M. Orozco, J.L. Gelpí, Molecular dynamics simulations: advances and applications. Adv. Appl. Bioinform. Chem. 8, 37 (2015)

    PubMed  PubMed Central  Google Scholar 

  2. A. McPherson, Review current approaches to macromolecular crystallization, in EJB reviews 1990. (Springer, Dordrecht, 1990), pp. 49–71

  3. A. McPherson, Introduction to protein crystallization. Methods 34(3), 254–265 (2004)

    CAS  PubMed  Google Scholar 

  4. M.C. Deller, B. Rupp, Approaches to automated protein crystal harvesting. Acta Crystallogr. F 70(2), 133–155 (2014)

    CAS  Google Scholar 

  5. A. Deniaud, L. Liguori, I. Blesneac, J.-L. Lenormand, E. Pebay-Peyroula, Crystallization of the membrane protein hVDAC1 produced in cell-free system. BBA-Biomembranes 1798(8), 1540–1546 (2010)

    CAS  PubMed  Google Scholar 

  6. H. Wada, N. Hirota, S. Matsumoto, H. Okada, M. Kiyohara, T. Ode, M. Tanokura, A. Nakamura, J. Ohtsuka, A. Kita, Application of high-field superconducting magnet to protein crystallization. Phys. Procedia 36, 953–957 (2012)

    CAS  Google Scholar 

  7. J. Leng, J.-B. Salmon, Microfluidic crystallization. Lab. Chip 9(1), 24–34 (2009)

    CAS  PubMed  Google Scholar 

  8. J. Möller, M.A. Schroer, M. Erlkamp, S. Grobelny, M. Paulus, S. Tiemeyer, F.J. Wirkert, M. Tolan, R. Winter, The effect of ionic strength, temperature, and pressure on the interaction potential of dense protein solutions: from nonlinear pressure response to protein crystallization. Biophys. J. 102(11), 2641–2648 (2012)

    PubMed  PubMed Central  Google Scholar 

  9. I. Russo Krauss, A. Merlino, A. Vergara, F. Sica, An overview of biological macromolecule crystallization. Int. J. Mol. Sci. 14(6), 11643–11691 (2013)

    PubMed  Google Scholar 

  10. R. Cudney, Protein crystallization and dumb luck. Rigaku J. 16(1), 1–7 (1999)

    CAS  Google Scholar 

  11. J. Ferreira, F. Castro, F. Rocha, S. Kuhn, Protein crystallization in a droplet-based microfluidic device: hydrodynamic analysis and study of the phase behaviour. Chem. Eng. Sci. 191, 232–244 (2018)

    CAS  Google Scholar 

  12. M. Maeki, H. Yamaguchi, M. Tokeshi, M. Miyazaki, Microfluidic approaches for protein crystal structure analysis. Anal. Sci. 32(1), 3–9 (2016)

    CAS  PubMed  Google Scholar 

  13. M.A. Vorontsova, D. Maes, P.G. Vekilov, Recent advances in the understanding of two-step nucleation of protein crystals. Faraday Discuss. 179, 27–40 (2015)

    CAS  PubMed  Google Scholar 

  14. M. Leunissen, An Essay on Several Aspects of Protein Crystallization Research (University of Cambridge, Cambridge, 2001)

    Google Scholar 

  15. S. Majeed, G. Ofek, A. Belachew, C.-C. Huang, T. Zhou, P.D. Kwong, Enhancing protein crystallization through precipitant synergy. Structure 11(9), 1061–1070 (2003)

    CAS  PubMed  Google Scholar 

  16. M. Frey, Water structure associated with proteins and its role in crystallization. Acta Crystallogr. D 50(4), 663–666 (1994)

    CAS  PubMed  Google Scholar 

  17. A.M. Kierzek, P. Zielenkiewicz, Models of protein crystal growth. Biophys. Chem. 91(1), 1–20 (2001)

    CAS  PubMed  Google Scholar 

  18. A. Chernov, Protein versus conventional crystals: creation of defects. J. Cryst. Growth 174(1–4), 354–361 (1997)

    CAS  Google Scholar 

  19. A.A. Chernov, Protein crystals and their growth. J. Struct. Biol. 142(1), 3–21 (2003)

    CAS  PubMed  Google Scholar 

  20. S. Durbin, G. Feher, Protein crystallization. Annu. Rev. Phys. Chem. 47(1), 171–204 (1996)

    CAS  PubMed  Google Scholar 

  21. A. McPherson, J.A. Gavira, Introduction to protein crystallization. Acta Crystallogr. F 70(1), 2–20 (2014)

    CAS  Google Scholar 

  22. G. Feher, Mechanisms of nucleation and growth of protein crystals. J. Cryst. Growth 76(3), 545–546 (1986)

    CAS  Google Scholar 

  23. A. McPherson, A. Malkin, Y.G. Kuznetsov, The science of macromolecular crystallization. Structure 3(8), 759–768 (1995)

    CAS  PubMed  Google Scholar 

  24. A. Bijelic, A. Rompel, Ten good reasons for the use of the tellurium-centered Anderson-Evans polyoxotungstate in protein crystallography. Acc. Chem. Res. 50(6), 1441–1448 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. U. Heinemann, K. Büssow, U. Mueller, P. Umbach, Facilities and methods for the high-throughput crystal structural analysis of human proteins. Acc. Chem. Res. 36(3), 157–163 (2003)

    CAS  PubMed  Google Scholar 

  26. M. Jaskolski, From atomic resolution to molecular giants: an overview of crystallographic studies of biological macro-molecules with synchrotron radiation. Acta Phys. Pol. A 117(2), 257 (2010)

    CAS  Google Scholar 

  27. N.E. Chayen, E. Saridakis, Protein crystallization: from purified protein to diffraction-quality crystal. Nat. Methods 5(2), 147–153 (2008)

    CAS  PubMed  Google Scholar 

  28. J. Newman, J. Xu, M.C. Willis, Initial evaluations of the reproducibility of vapor-diffusion crystallization. Acta Crystallogr. D 63(7), 826–832 (2007)

    CAS  PubMed  Google Scholar 

  29. A. McPherson, B. Cudney, Optimization of crystallization conditions for biological macromolecules. Acta Crystallogr. F 70(11), 1445–1467 (2014)

    CAS  Google Scholar 

  30. J.D. Ng, J.K. Baird, L. Coates, J.M. Garcia-Ruiz, T.A. Hodge, S. Huang, Large-volume protein crystal growth for neutron macromolecular crystallography. Acta Crystallogr. F 71(4), 358–370 (2015)

    CAS  Google Scholar 

  31. N. Rakel, M. Baum, J. Hubbuch, Moving through three-dimensional phase diagrams of monoclonal antibodies. Biotechnol. Prog. 30(5), 1103–1113 (2014)

    CAS  PubMed  Google Scholar 

  32. A. McPherson, A. Malkin, Y.G. Kuznetsov, Atomic force microscopy in the study of macromolecular crystal growth. Annu. Rev. Biophys. 29(1), 361–410 (2000)

    CAS  Google Scholar 

  33. M. Abdalla, W. Eltayb, A. Samad, D.T. SHM, Important factors influencing protein crystallization. Glob. J. Biotech. Biomater. Sci. 2(1), 025–028 (2016)

    Google Scholar 

  34. B. Rupp, Biomolecular Crystallography: Principles, Practice, and Application to Structural Biology (Garland Science, Taylor and Francis Group, New York, 2009)

    Google Scholar 

  35. Y. Hashizume, K. Inaka, N. Furubayashi, M. Kamo, S. Takahashi, H. Tanaka, Methods to Grow better Diffractive Protein Crystals Acquired through Space Experiments. Preprints (2019)

  36. P. Kumar, S. Sharma, An overview of purification methods for proteins. IJAR 1(12), 450–459 (2015)

    Google Scholar 

  37. A.C. Dumetz, A.M. Chockla, E.W. Kaler, A.M. Lenhoff, Effects of pH on protein–protein interactions and implications for protein phase behavior. BBA-Proteins Proteom. 1784(4), 600–610 (2008)

    CAS  Google Scholar 

  38. K.A. Kantardjieff, B. Rupp, Protein isoelectric point as a predictor for increased crystallization screening efficiency. Bioinformatics 20(14), 2162–2168 (2004)

    CAS  PubMed  Google Scholar 

  39. N.E. Chayen, Rigorous filtration for protein crystallization. J. Appl. Crystallogr. 42(4), 743–744 (2009)

    CAS  Google Scholar 

  40. F. Rosenberger, S. Howard, J. Sowers, T. Nyce, Temperature dependence of protein solubility—determination and application to crystallization in X-ray capillaries. J. Cryst. Growth 129(1–2), 1–12 (1993)

    CAS  Google Scholar 

  41. F. Rosenberger, P. Vekilov, M. Muschol, B. Thomas, Nucleation and crystallization of globular proteins—what we know and what is missing. J. Cryst. Growth 168(1–4), 1–27 (1996)

    CAS  Google Scholar 

  42. E.K. Yan, F.Z. Zhao, C.Y. Zhang, X.Z. Yang, M. Shi, J. He, D.C. Yin, Seeding protein crystallization with cross-linked protein crystals. Cryst. Growth Des. 18(2), 1090–1100 (2018)

    CAS  Google Scholar 

  43. T. Bergfors, Seeds to crystals. J. Struct. Biol. 142(1), 66–76 (2003)

    CAS  PubMed  Google Scholar 

  44. A. D’Arcy, T. Bergfors, S.W. Cowan-Jacob, M. Marsh, Microseed matrix screening for optimization in protein crystallization: what have we learned? Acta Crystallogr. F 70(9), 1117–1126 (2014)

    Google Scholar 

  45. M.M. Islam, Y. Kuroda, A hetero-micro-seeding strategy for readily crystallizing closely related protein variants. Biochem. Biophys. Res. Commun. 493(1), 504–508 (2017)

    CAS  PubMed  Google Scholar 

  46. R.B. Zhou, H.L. Cao, C.Y. Zhang, D.C. Yin, A review on recent advances for nucleants and nucleation in protein crystallization. Cryst. Eng. Comm. 19(8), 1143–1155 (2017)

    CAS  Google Scholar 

  47. T. Bergfors, Protein Crystallization: Techniques, Strategies, and Tips (International University Line, La Jolla, 1999)

    Google Scholar 

  48. M. Benvenuti, S. Mangani, Crystallization of soluble proteins in vapor diffusion for x-ray crystallography. Nat. Protoc. 2(7), 1633–1651 (2007)

    CAS  PubMed  Google Scholar 

  49. J. Korczyńska, T.-C. Hu, D.K. Smith, J. Jenkins, R. Lewis, T. Edwards, A.M. Brzozowski, Microscale vapour diffusion for protein crystallization. Acta Crystallogr. D 63(9), 1009–1015 (2007)

    PubMed  Google Scholar 

  50. P. C. Weber (ed.), Overview of protein crystallization methods, in Methods in Enzymology, vol. 276. (Elsevier, 1997), pp. 13–22

  51. A. Mittal, D. Malhotra, P. Jain, A. Kalia, T. Shunmugaperumal, Studies on aspirin crystals generated by a modified vapor diffusion method. AAPS Pharm. Sci. Tech. 17(4), 988–994 (2016)

    CAS  Google Scholar 

  52. B. Brumshtein, H.M. Greenblatt, A.H. Futerman, I. Silman, J.L. Sussman, Control of the rate of evaporation in protein crystallization by themicrobatch under oil’method. J. Appl. Crystallogr. 41(5), 969–971 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  53. A. Merlino, I.R. Krauss, A. Albino, A. Pica, A. Vergara, M. Masullo, E.D. Vendittis, F. Sica, Improving protein crystal quality by the without-oil microbatch method: crystallization and preliminary X-ray diffraction analysis of glutathione synthetase from Pseudoalteromonas haloplanktis. Int. J. Mol. Sci. 12(9), 6312–6319 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  54. H. Yang, B.D. Belviso, X. Li, W. Chen, T.F. Mastropietro, G. Di Profio, J.Y. Heng, Optimization of vapor diffusion conditions for anti-CD20 crystallization and scale-up to meso batch. Crystals 9(5), 230 (2019)

    CAS  Google Scholar 

  55. R. Berisio, V. Lamzin, F. Sica, K. Wilson, A. Zagari, L. Mazzarella, Protein titration in the crystal state. J. Mol. Biol. 292(4), 845–854 (1999)

    CAS  PubMed  Google Scholar 

  56. L. Li, W. Du, R.F. Ismagilov, Multiparameter screening on slipchip used for nanoliter protein crystallization combining free interface diffusion and microbatch methods. J. Am. Chem. Soc. 132(1), 112–119 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  57. B. Segelke, Macromolecular crystallization with microfluidic free-interface diffusion. Expert Rev. Proteomic 2(2), 165–172 (2005)

    CAS  Google Scholar 

  58. B. Reid, G. Koch, Y. Boulanger, B. Hartley, D. Blow, Crystallization and preliminary X-ray diffraction studies on tyrosyl-transfer RNA synthetase from Bacillus stearothermophilus. J. Mol. Biol. 80(1), 199–201 (1973)

    CAS  PubMed  Google Scholar 

  59. P. C. Weber (ed.), Overview of protein crystallization methods, in Methods in Enzymology. (Elsevier, New York, 1997), pp. 13–22

  60. L.J. DeLucas, K.M. Moore, M.M. Long, R. Rouleau, T. Bray, W. Crysel, L. Weise, Protein crystal growth in space, past and future. J. Cryst. Growth 237, 1646–1650 (2002)

    Google Scholar 

  61. A. McPherson, L.J. DeLucas, Microgravity protein crystallization. NPJ Microgravity 1(1), 1–20 (2015)

    Google Scholar 

  62. A. Vergara, B. Lorber, C. Sauter, R. Giegé, A. Zagari, Lessons from crystals grown in the Advanced Protein Crystallisation Facility for conventional crystallisation applied to structural biology. Biophys. Chem. 118(2–3), 102–112 (2005)

    CAS  PubMed  Google Scholar 

  63. T.J. Scott, N.S. Vonortas, Microgravity protein crystallization for drug development: a bold example of public sector entrepreneurship. J. Technol. Transf. 124, 1–20 (2019)

    Google Scholar 

  64. Y. Zhou, J.H. Morais-Cabral, A. Kaufman, R. MacKinnon, Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution. Nature 414(6859), 43–48 (2001)

    CAS  PubMed  Google Scholar 

  65. P.D. Kwong, R. Wyatt, J. Robinson, R.W. Sweet, J. Sodroski, W.A. Hendrickson, Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393(6686), 648–659 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  66. A. Warke, C. Momany, Addressing the protein crystallization bottleneck by cocrystallization. Cryst. Growth Des. 7(11), 2219–2225 (2007)

    CAS  Google Scholar 

  67. R.E. Bird, K.D. Hardman, J.W. Jacobson, S. Johnson, B.M. Kaufman, S.M. Lee, M. Whitlow, Single-chain antigen-binding proteins. Science 242(4877), 423–426 (1988)

    CAS  PubMed  Google Scholar 

  68. T. Hashimoto, Y. Ye, A. Matsuno, Y. Ohnishi, A. Kitamura, M. Kinjo, T. Matsui, Encapsulation of biomacromolecules by soaking and co-crystallization into porous protein crystals of hemocyanin. Biochem. Biophys. Res. Commun. 509(2), 577–584 (2019)

    CAS  PubMed  Google Scholar 

  69. C.W. Tornøe, E. Johansson, P.O. Wahlund, Divergent protein synthesis of Bowman-Birk protease inhibitors, their hydrodynamic behavior and co-crystallization with α-chymotrypsin. Synlett 28(15), 1901–1906 (2017)

    Google Scholar 

  70. S. Chen, W. Zhang, J. Min, K. Liu, Lesson from a Fab-enabled co-crystallization study of TDRD2 and PIWIL1. Methods 175, 72–78 (2020)

    CAS  PubMed  Google Scholar 

  71. Y. Jiang, J. Holcomb, N. Spellmon, Z. Yang, Estrogen Receptors (Springer, New York, 2016), pp. 207–217

    Google Scholar 

  72. X. Meng, L. Zhang, H. Wei, F. Li, L. Hu, H. Ma, Z. Liu, Optimized methods for IL-17A refolding and anti-IL17A Fab production for co-crystallization with small molecules. Biotechniques 69, 71–76 (2020)

    Google Scholar 

  73. A. Kohl, P. Amstutz, P. Parizek, H.K. Binz, C. Briand, G. Capitani, M.G. Grütter, Allosteric inhibition of aminoglycoside phosphotransferase by a designed ankyrin repeat protein. Structure 13(8), 1131–1141 (2005)

    CAS  PubMed  Google Scholar 

  74. D. Röthlisberger, K.M. Pos, A. Plückthun, An antibody library for stabilizing and crystallizing membrane proteins–selecting binders to the citrate carrier CitS. FEBS Lett. 564(3), 340–348 (2004)

    PubMed  Google Scholar 

  75. B. Li, S.J. Russell, D.M. Compaan, K. Totpal, S.A. Marsters, A. Ashkenazi, S.S. Sidhu, Activation of the proapoptotic death receptor DR5 by oligomeric peptide and antibody agonists. J. Mol. Biol. 361(3), 522–536 (2006)

    CAS  PubMed  Google Scholar 

  76. C. Berthet-Colominas, S. Monaco, A. Novelli, G. Sibaï, F. Mallet, S. Cusack, Head-to-tail dimers and interdomain flexibility revealed by the crystal structure of HIV-1 capsid protein (p24) complexed with a monoclonal antibody Fab. EMBO J. 18(5), 1124–1136 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  77. B. Nilsson, T. Moks, B. Jansson, L. Abrahmsen, A. Elmblad, E. Holmgren, M. Uhlen, A synthetic IgG-binding domain based on staphylococcal protein A. Protein Eng. Des. Sel. 1(2), 107–113 (1987)

    CAS  Google Scholar 

  78. H. Hamada, T. Arakawa, K. Shiraki, Effect of additives on protein aggregation. Curr. Pharm. Biotechnol. 10(4), 400–407 (2009)

    CAS  PubMed  Google Scholar 

  79. L. Ito, T. Kobayashi, K. Shiraki, H. Yamaguchi, Effect of amino acids and amino acid derivatives on crystallization of hemoglobin and ribonuclease A. J. Synchrotron Radiat. 15(3), 316–318 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  80. M. Vedadi, F.H. Niesen, A. Allali-Hassani, O.Y. Fedorov, P.J. Finerty, G.A. Wasney, R. Yeung, C. Arrowsmith, L.J. Ball, H. Berglund, Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination. Proc. Natl. Acad. Sci. USA. 103(43), 15835–15840 (2006)

    CAS  PubMed  Google Scholar 

  81. B.G. Abdallah, S. Roy-Chowdhury, R. Fromme, P. Fromme, A. Ros, Protein crystallization in an actuated microfluidic nanowell device. Cryst. Growth Des. 16(4), 2074–2082 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  82. V.M. Bolanos-Garcia, N.E. Chayen, New directions in conventional methods of protein crystallization. Prog. Biophys. Mol. Biol. 101(1–3), 3–12 (2009)

    CAS  PubMed  Google Scholar 

  83. M. Polino, C.A. Portugal, G. Di Profio, I.M. Coelhoso, J.G. Crespo, Protein crystallization by membrane-assisted technology. Cryst. Growth Des. 19(8), 4871–4883 (2019)

    CAS  Google Scholar 

  84. E. Curcio, A. Criscuoli, E. Drioli, Membrane crystallizers. Ind. Eng. Chem. Res. 40(12), 2679–2684 (2001)

    CAS  Google Scholar 

  85. U.V. Shah, C. Amberg, Y. Diao, Z. Yang, J.Y. Heng, Heterogeneous nucleants for crystallogenesis and bioseparation. Curr. Opin. Chem. Eng. 8, 69–75 (2015)

    Google Scholar 

  86. C.N. Nanev, E. Saridakis, N.E. Chayen, Protein crystal nucleation in pores. Sci. Rep. 7(1), 1–8 (2017)

    Google Scholar 

  87. S. Khurshid, E. Saridakis, L. Govada, N.E. Chayen, Porous nucleating agents for protein crystallization. Nat. Protoc. 9(7), 1621 (2014)

    CAS  PubMed  Google Scholar 

  88. N.E. Chayen, E. Saridakis, R. El-Bahar, Y. Nemirovsky, Porous silicon: an effective nucleation-inducing material for protein crystallization. J. Mol. Biol. 312(4), 591–595 (2001)

    CAS  PubMed  Google Scholar 

  89. A. Gugliuzza, M.C. Aceto, E. Drioli, Interactive functional poly (vinylidene fluoride) membranes with modulated lysozyme affinity: a promising class of new interfaces for contactor crystallizers. Polym. Int. 58(12), 1452–1464 (2009)

    CAS  Google Scholar 

  90. S. Simone, E. Curcio, G. Di Profio, M. Ferraroni, E. Drioli, Polymeric hydrophobic membranes as a tool to control polymorphism and protein–ligand interactions. J. Membr. Sci. 283(1–2), 123–132 (2006)

    CAS  Google Scholar 

  91. H. Gong, M. Beauchamp, S. Perry, A.T. Woolley, G.P. Nordin, Optical approach to resin formulation for 3D printed microfluidics. RSC Adv. 5(129), 106621–106632 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  92. A.S. Pawate, V. Šrajer, J. Schieferstein, S. Guha, R. Henning, I. Kosheleva, M. Schmidt, Z. Ren, P.J. Kenis, S.L. Perry, Towards time-resolved serial crystallography in a microfluidic device. Acta Crystallogr. F 71(7), 823–830 (2015)

    CAS  Google Scholar 

  93. B. Zheng, L.S. Roach, R.F. Ismagilov, Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. J. Am. Chem. Soc. 125(37), 11170–11171 (2003)

    CAS  PubMed  Google Scholar 

  94. A. Peddi, L. Muthusubramaniam, Y.F. Zheng, V. Cherezov, Y. Misquitta, M. Caffrey, High-throughput automated system for crystallizing membrane proteins in lipidic mesophases. IEEE. Trans. Autom. Sci. Eng. 4(2), 129–140 (2007)

    Google Scholar 

  95. U. Zander, G. Hoffmann, I. Cornaciu, J.-P. Marquette, G. Papp, C. Landret, G. Seroul, J. Sinoir, M. Röwer, F. Felisaz, Automated harvesting and processing of protein crystals through laser photoablation. Acta Crystallogr. D 72(4), 454–466 (2016)

    CAS  Google Scholar 

  96. S. Boivin, S. Kozak, G. Rasmussen, I.M. Nemtanu, V. Vieira, R. Meijers, An integrated pipeline for sample preparation and characterization at the EMBL@ PETRA3 synchrotron facilities. Methods 95, 70–77 (2016)

    CAS  PubMed  Google Scholar 

  97. Y. Lin, What’s happened over the last five years with high-throughput protein crystallization screening? Expert Opin. Drug. Discov. 13, 691–695 (2018)

    PubMed  Google Scholar 

  98. V. Venditti, T.K. Egner, G.M. Clore, Hybrid approaches to structural characterization of conformational ensembles of complex macromolecular systems combining NMR residual dipolar couplings and solution X-ray scattering. Chem. Rev. 116(11), 6305–6322 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  99. S.A. Smith, W.E. Palke, J.T. Gerig, The hamiltonians of NMR. Part II. Concept. Magn. Reson. A 4(3), 181–204 (1992)

    CAS  Google Scholar 

  100. E. Brunner, Residual dipolar couplings in protein NMR. Concept. Magn. Reson. A 13(4), 238–259 (2001)

    CAS  Google Scholar 

  101. M.R. Hansen, L. Mueller, A. Pardi, Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat. Struct. Biol. 5(12), 1065–1074 (1998)

    CAS  PubMed  Google Scholar 

  102. P. Permi, Measurement of residual dipolar couplings from 1 H α to 13 C α and 15 N using a simple HNCA-based experiment. J. Biomol. NMR 27(4), 341–349 (2003)

    CAS  PubMed  Google Scholar 

  103. G. Kontaxis, A. Bax, Multiplet component separation for measurement of methyl 13C-1H dipolar couplings in weakly aligned proteins. J. Biomol. NMR 20(1), 77–82 (2001)

    CAS  PubMed  Google Scholar 

  104. M. Ottiger, F. Delaglio, A. Bax, Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. Concept. Magn. Reson. A 131(2), 373–378 (1998)

    CAS  Google Scholar 

  105. L. Clark, J.A. Zahm, R. Ali, M. Kukula, L. Bian, S.M. Patrie, D.M. Rosenbaum, Methyl labeling and TROSY NMR spectroscopy of proteins expressed in the eukaryote Pichia pastoris. J. Biomol. NMR 62(3), 239–245 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  106. J.E. Ollerenshaw, V. Tugarinov, L.E. Kay, Methyl TROSY: explanation and experimental verification. Magn. Reson. Chem. 41(10), 843–852 (2003)

    CAS  Google Scholar 

  107. S.A. Shinsky, M.S. Cosgrove, Unique role of the WD-40 repeat protein 5 (WDR5) subunit within the mixed lineage leukemia 3 (MLL3) histone methyltransferase complex. J. Biol. Chem. 290(43), 25819–25833 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  108. F. Heinrich, S. Chakravarthy, H. Nanda, A. Papa, P.P. Pandolfi, A.H. Ross, M. Lösche, The PTEN tumor suppressor forms homodimers in solution. Structure 23(10), 1952–1957 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  109. A. Grishaev, N.J. Anthis, G.M. Clore, Contrast-matched small-angle X-ray scattering from a heavy-atom-labeled protein in structure determination: application to a lead-substituted calmodulin–peptide complex. J. Am. Chem. Soc. 134(36), 14686–14689 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  110. J. Lipfert, S. Doniach, Small-angle X-ray scattering from RNA, proteins, and protein complexes. Annu. Rev. Biophys. Biomol. Struct. 36, 307–327 (2007)

    CAS  PubMed  Google Scholar 

  111. P.P.M. Groenewegen, D. Feil, Molecular form factors in X-ray crystallography. Acta Crystallogr. A 25(3), 444–450 (1969)

    CAS  Google Scholar 

  112. T.D. Grant, J.R. Luft, L.G. Carter, T. Matsui, T.M. Weiss, A. Martel, E.H. Snell, The accurate assessment of small-angle X-ray scattering data. Acta Crystallogr. D 71(1), 45–56 (2015)

    CAS  PubMed  Google Scholar 

  113. R.P. Rambo, J.A. Tainer, Improving small-angle X-ray scattering data for structural analyses of the RNA world. RNA 16(3), 638–646 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  114. C.D. Putnam, M. Hammel, G.L. Hura, J.A. Tainer, X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q. Rev. Biophys. 40(3), 191–285 (2007)

    CAS  PubMed  Google Scholar 

  115. A. Grishaev, Sample preparation, data collection, and preliminary data analysis in biomolecular solution X-ray scattering. Curr. Protoc. Protein Sci. 70(1), 17–24 (2012)

    Google Scholar 

  116. E.F. Garman, M. Weik, Radiation damage to macromolecules: kill or cure? J. Synchrotron Radiat. 22(2), 195–200 (2015)

    CAS  PubMed  Google Scholar 

  117. J.E. Burke, S.E. Butcher, Nucleic acid structure characterization by small angle X-ray scattering (SAXS). Curr. Protoc. Nucl. Acid Chem. 51(1), 7–18 (2012)

    Google Scholar 

  118. C.D. Schwieters, J.Y. Suh, A. Grishaev, R. Ghirlando, Y. Takayama, G.M. Clore, Solution structure of the 128 kDa enzyme I dimer from Escherichia coli and its 146 kDa complex with HPr using residual dipolar couplings and small-and wide-angle X-ray scattering. J. Am. Chem. Soc. 132(37), 13026–13045 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  119. P. Rossi, L. Shi, G. Liu, C.M. Barbieri, H.W. Lee, T.D. Grant, G.T. Montelione, A hybrid NMR/SAXS-based approach for discriminating oligomeric protein interfaces using R osetta. Proteins 83(2), 309–317 (2015)

    CAS  PubMed  Google Scholar 

  120. G.M. Clore, D.S. Garrett, R-factor, free R, and complete cross-validation for dipolar coupling refinement of NMR structures. J. Am. Chem. Soc. 121(39), 9008–9012 (1999)

    CAS  Google Scholar 

  121. C.D. Schwieters, G.M. Clore, Using small angle solution scattering data in Xplor-NIH structure calculations. Prog. Nucl. Mag. Res. Spectrosc. 80, 1–11 (2014)

    CAS  Google Scholar 

  122. L. Deshmukh, C.D. Schwieters, A. Grishaev, R. Ghirlando, J.L. Baber, G.M. Clore, Structure and dynamics of full-length HIV-1 capsid protein in solution. J. Am. Chem. Soc. 135(43), 16133–16147 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  123. S. Du, L. Betts, R. Yang, H. Shi, J. Concel, J. Ahn, J.I. Yeh, Structure of the HIV-1 full-length capsid protein in a conformationally trapped unassembled state induced by small-molecule binding. J. Mol. Biol. 406(3), 371–386 (2011)

    CAS  PubMed  Google Scholar 

  124. O. Pornillos, B.K. Ganser-Pornillos, M. Yeager, Atomic-level modelling of the HIV capsid. Nature 469(7330), 424–427 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  125. O. Pornillos, B.K. Ganser-Pornillos, B.N. Kelly, Y. Hua, F.G. Whitby, C.D. Stout, M. Yeager, X-ray structures of the hexameric building block of the HIV capsid. Cell 137(7), 1282–1292 (2009)

    PubMed  PubMed Central  Google Scholar 

  126. R. Geczy, N. J. Christensen, K. K. Rasmussen, I. Kálomista, M. K. Tiwari, P. Shah, P. W. Thulstrup, Formation and structure of fluorescent silver nanoclusters at interfacial binding sites facilitating oligomerization of DNA hairpins. Angew. Chem. (2020)

  127. F. Molaabasi, M. Sarparast, M. Shamsipur, L. Irannejad, A.A. Moosavi-Movahedi, A. Ravandi, R. Ghazfar, Shape-controlled synthesis of luminescent hemoglobin capped hollow porous platinum nanoclusters and their application to catalytic oxygen reduction and cancer imaging. Sci. Rep. 8(1), 1–18 (2018)

    CAS  Google Scholar 

  128. M. Shamsipur, F. Molaabasi, M. Sarparast, E. Roshani, Z. Vaezi, M. Alipour, S. Hosseinkhani, Photoluminescence mechanisms of dual-emission fluorescent silver nanoclusters fabricated by human hemoglobin template: from oxidation-and aggregation-induced emission enhancement to targeted drug delivery and cell imaging. ACS Sustain. Chem. Eng. 6(8), 11123–11137 (2018)

    CAS  Google Scholar 

  129. M. Shamsipur, K. Molaei, F. Molaabasi, S. Hosseinkhani, A. Taherpour, M. Sarparast, A. Barati, Aptamer-based fluorescent biosensing of adenosine triphosphate and cytochrome c via aggregation-induced emission enhancement on novel label-free DNA-capped silver nanoclusters/graphene oxide nanohybrids. ACS Appl. Mater. Interfaces 11(49), 46077–46089 (2019)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Molaabasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheraghian Radi, H., Hajipour-Verdom, B. & Molaabasi, F. Macromolecular crystallization: basics and advanced methodologies. J IRAN CHEM SOC 18, 543–565 (2021). https://doi.org/10.1007/s13738-020-02058-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-02058-y

Keywords

Navigation