Skip to main content
Log in

Perlite–SO3H nanoparticles: very efficient and reusable catalyst for three-component synthesis of N-cyclohexyl-3-aryl-quinoxaline-2-amine derivatives under ultrasound irradiation

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

An efficient green approach for the synthesis of N-cyclohexyl-3-aryl-quinoxaline-2-amine derivatives, via a three-component one-pot condensation reaction of o-phenylenediamine, aromatic aldehydes and cyclohexyl isocyanide in the presence of perlite–SO3H nanoparticles (diameter/thickness of platelets < 100 nm) under ultrasound irradiation has been demonstrated. The present method offers advantages such as shorter reaction time, easy work-up, excellent yields, recovery and reusability of catalyst. In addition, the methodology has been prosperous in getting the green chemistry purposes such as natural catalyst, using ultrasound irradiation instead of conventional heating and stirring, and a non-hazardous products in the thus combining the features of both economic and environmental advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2

Similar content being viewed by others

References

  1. I. Akritopoulou-Zanze, Isocyanide-based multicomponent reactions in drug discovery. Curr. Opin. Chem. Biol. 12, 324–331 (2008)

    Article  CAS  PubMed  Google Scholar 

  2. S. Sadjadi, M. Heravi, N. Nazari, Isocyanide-based multicomponent reactions in the synthesis of heterocycles. RSC Adv 6, 53203–53272 (2016)

    Article  CAS  Google Scholar 

  3. A. Domling, Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev. 106, 17–89 (2006)

    Article  CAS  PubMed  Google Scholar 

  4. M. Jida, M. Soueidan, N. Willand, F. Agbossou-Niedercorn, L. Pelinski, G. Laconde, R. Deprez-Poulain, B. Deprez, A facile and rapid synthesis of N-benzyl-2-substituted piperazines. Tetrahedron Lett. 52, 1705–1708 (2011)

    Article  CAS  Google Scholar 

  5. M. Jida, S. Malaquin, R. Deprez-Poulain, G. Laconde, B. Deprez, Synthesis of five- and six-membered lactams via solvent-free microwave Ugi reaction. Tetrahedron Lett. 51, 5109–5111 (2010)

    Article  CAS  Google Scholar 

  6. S. Malaquin, M. Jida, G.D. Gesquiere, R. Deprez-Poulain, B. Deprez, G. Laconde, Ugi reaction for the synthesis of 4-aminopiperidine-4-carboxylic acid derivatives. Application to the synthesis of carfentanil and remifentanil. Tetrahedron Lett. 51, 2983–2985 (2010)

    Article  CAS  Google Scholar 

  7. A.E.A. Porter, in Comprehensive Heterocyclic Chemistry, 3 ed. by A.R. Katritzky, C.W. Rees eds. (Pergamon Press, New York, 1984), pp. 191–196

    Google Scholar 

  8. A. Varadi, T.C. Palmer, R. Notis Dardashti, S. Majumdar, Isocyanide-based multicomponent reactions for the synthesis of heterocycles. Molecules 21, 19–41 (2015)

    Article  CAS  Google Scholar 

  9. G.W.H. Cheeseman, R.F. Cookson, in The Chemistry of Heterocyclic Compounds, 1 ed. by A. Weissberger, E.C. Taylor eds. 2nd edn. : (Wiley, New York, 1970)

    Google Scholar 

  10. S. Tariq, K. Somakala, M. Amir, Quinoxaline: an insight into the recent pharmacological advances. Eur. J. Med. Chem. 143, 542–557 (2018)

    Article  CAS  PubMed  Google Scholar 

  11. S. Ucar, S. Essiz, A. Dastan, Bromination of quinoxaline and derivatives: effective synthesis of some new brominated quinoxalines. Tetrahedron 73, 1618–1632 (2017)

    Article  CAS  Google Scholar 

  12. R.N. Lima, A.L.M. Porto, Facile synthesis of new quinoxaline from ethyl gallate by green chemistry protocol. Tetrahedron Lett. 58, 825–828 (2017)

    Article  CAS  Google Scholar 

  13. M. Sato, T. Nakazawa, Y. Tsunematsu, K. Hotta, K. Watanabe, Echinomycin biosynthesis. Curr. Opin. Chem. Biol. 17, 537–545 (2013)

    Article  CAS  PubMed  Google Scholar 

  14. H. Oveisi, M. Adharvana Chari, Ch.V. Nguyen, J.E. Chen, S.M. Alshehri, E. Ynmaz, Md.Sh. Hossein, Y Yamauchi, K.C.W. Wu, ZnO-loaded mesoporous silica (KIT-6) as an efficient solid catalyst for production of various substituted quinoxalines. Catal. Commun. 90, 111–115 (2017)

    Article  CAS  Google Scholar 

  15. J.A. Pereira, A.M. Pessoa, M.N.D.S. Cordeiro, R. Fernandes, C. Prudencio, J.P. Noronha, M. Vieira, Quinoxaline, its derivatives and applications: a state of the review. Eur. J. Med. Chem. 97, 664–672 (2015)

    Article  CAS  PubMed  Google Scholar 

  16. J. Azuaje, A. El Maatouguri, X. Garcia-Mera, E. Sotelo, Ugi-based approaches to quinoxaline libraries. ACS Comb. Sci. 16, 403–411 (2014)

    Article  CAS  PubMed  Google Scholar 

  17. S. Achelle, Ch Baudequin, N. Ple, Luminescent materials incorporating pyrazine or quinoxaline moieties. Dyes Pigm. 98, 575–600 (2013)

    Article  CAS  Google Scholar 

  18. H. Chavan, L.M. Adsul, B.P. Bandgar, Polyethylene glycol in water: a simple, efficient and green protocol for the synthesis of quinoxalines. J. Chem. Sci. 123, 477–483 (2011)

    Article  CAS  Google Scholar 

  19. P.O. Patil, S.B. Bari, Nitrogen heterocycles as potential monoamine oxidase inhibitors: Synthetic aspects. Arab. J. Chem. 7, 857–884 (2014)

    Article  CAS  Google Scholar 

  20. M.R. Islami, Z. Hassani, One-pot and efficient protocol for synthesis of quinoxaline derivatives. ARKIVOC 2008, 280–287 (2008)

    Article  Google Scholar 

  21. H.R. Darabi, F. Tahoori, K. Aghapour, F. Taala, F. Mohsenzadeh, NH4Cl–CH3OH: an efficient, acid- and metal-free catalyst system for the synthesis of quinoxalines. J. Braz. Chem. Soc. 19, 1646–1652 (2008)

    Article  CAS  Google Scholar 

  22. Ch Li, F. Zhang, Zh Yang, Ch Qi, Chemoselective synthesis of quinoxalines and benzimidazoles by silica gel catalysis. Tetrahedron Lett. 55, 5430–5433 (2014)

    Article  CAS  Google Scholar 

  23. J.-F. Chen, Z.-Q. Liu, Synthesis of imidazo[1,2-a]quinoxalines by double Groebke reactions and inhibitory effects on radicals and DNA oxidation. Tetrahedron Lett. 72, 1850–1859 (2016)

    Article  CAS  Google Scholar 

  24. I.H. Eissa, A.M. El-Naggar, N.E.A.A. El-Sattar, A.S.A. Youssef, Design and discovery of novel quinoxaline derivatives as dual DNA intercalators and topoisomerase II inhibitors. Anticancer Agents Med. Chem. 18, 195–209 (2018)

    Article  CAS  PubMed  Google Scholar 

  25. A. Dandia, V. Parewa, Sh Maheshwari, K.S. Rathore, Cu doped CdS nanoparticles: a versatile and recoverable catalyst for chemoselective synthesis of indolo[2,3-b]quinoxaline derivatives under microwave irradiation. J. Mol. Catal. A Chem. 394, 244–252 (2014)

    Article  CAS  Google Scholar 

  26. M.M. Heravi, B. Baghernejad, H.A. Oskooie, A novel three-component reaction for the synthesis of N-cyclohexyl-3-aryl-quinoxaline-2-amines. Tetrahedron Lett. 50, 767–769 (2009)

    Article  CAS  Google Scholar 

  27. J. Safaei-Ghomi, S. Rohani, A. Ziarati, CuI nanoparticles as a reusable heterogeneous catalyst for the one-pot synthesis of N-cyclohexyl-3-aryl-quinoxaline-2-amines under mild conditions. J. Nanostruc. 2, 79–83 (2012)

    Google Scholar 

  28. L.-Y. Fan, L. Wei, H. Wen-Jun, X.-X. Li, Yb modified NaY zeolite: a recyclable and efficient catalyst for quinoxaline synthesis. Chin. Chem. Lett. 25, 1203–1206 (2014)

    Article  CAS  Google Scholar 

  29. H. Slimi, Y. Moussaoui, R.B. Salem, Synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones via Biginelli reaction promoted by bismuth(III)nitrate or PPh3 without solvent. Aran. J. Chem. 9, 510–514 (2016)

    Article  CAS  Google Scholar 

  30. M. Jeganthan, A. Dhakshinamoorthy, K. Pitchumani, One-pot synthesis of 2-substituted quinoxalines using K10-montmorillonite as heterogeneous catalyst. Tetrahedron Lett. 55, 1616–1620 (2014)

    Article  CAS  Google Scholar 

  31. S.N. Hosseini, S.M. Borghei, M. Vossoughi, N. Taghavinia, Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol. Appl. Catalysis B Environ. 18, 53–62 (2007)

    Article  CAS  Google Scholar 

  32. Jahanshahi,R.,Akhlaghinia,B. Expanded perlite: an inexpensive natural efficient heterogeneous catalyst for the green and highly accelerated solvent-free synthesis of 5-substituted-1H-tetrazoles using [bmim]N3 and nitriles. RSC Adv. 5: 104087–104096 (2015).

    Article  CAS  Google Scholar 

  33. Ramazani,A.,Rouhani,M.,Mirhadi,E.,Sheikhi,M.,Ślepokura,K.,Lis,T, Perlite-SO3H nanoparticles as an efficient and reusable catalyst for one-pot three-component synthesis of 1,2-dihydro-1-aryl-naphtho[1,2-e][1,3]oxazine-3-one derivatives under both microwave-assisted and thermal solvent-free conditions: single crystal x-ray structure analysis and theoretical study, Nano. Chem. Res. 1:87–107 (2016).

    Google Scholar 

  34. Skubiszewska-Zięba,J.,Charmas,B.,Leboda,R.,Gun’ko,V.M., Carbon-mineral adsorbents with a diatomaceous earth/perlite matrix modified by carbon deposits, Micropor. Mesopor. Mat. 156:209–2016 (2012).

    Article  CAS  Google Scholar 

  35. E. Kolvari, N. Koukabi, M.M. Hosseini, Perlite, A cheap natural support for immobilization of sulfonic acid as a heterogeneous solid acid catalyst for the heterocyclic multicomponent reaction. J. Mol. Catal. A Chem 397, 68–75 (2015)

    Article  CAS  Google Scholar 

  36. G. Cravotto, P. Cintas, Forcing and controlling chemical reactions with ultrasound. Angew. Chem. Int. Ed. 46, 5476–5478 (2007)

    Article  CAS  Google Scholar 

  37. A.C.M.P. Da Silva, C.G. Pancote, C.L. Brito, N.B.A.B. Da Silveira, Synthesis 2004, 1557–1558 (2004)

    Article  CAS  Google Scholar 

  38. M. Rouhani, A. Ramazani, S.W. Joo, Y.Very Hanifehpour, Efficient and rapid catalyst-free one-pot three component synthesis of 2,5-dihydro-5-imino-2-methylfuran-3,4-dicarboxylate derivatives under ultrasound irradiation. Bull. Korean Chem. Soc. 33, 4127–4131 (2012)

    Article  CAS  Google Scholar 

  39. A. Ramazani, M. Rouhani, S.W. Joo, Novel, fast and efficient one-pot sonochemical synthesis of 2-aryl-1,3,4-oxadiazoles. Ultrasoun. Sonochem. 20, 262–267 (2014)

    Google Scholar 

  40. A. Ramazani, M. Rouhani, S.W. Joo, Ultrasonics in isocyanide-based multicomponent reactions: a new, efficient and fast method for the synthesis of fully substituted 1,3,4-oxadiazole derivatives under ultrasound irradiation. Ultrasoun. Sonochem. 21, 391–396 (2015)

    Google Scholar 

  41. A. Ramazani, M. Rouhani, S.W. Joo, Catalyst-free sonosynthesis of highly substituted propanamide derivatives in water. Ultrason. Sonochem. 28, 393–399 (2016)

    Article  CAS  PubMed  Google Scholar 

  42. H. Ahankar, A. Ramazani, K. Slepokura, T. Lis, S.W. Joo, Synthesis of pyrrolidinone derivatives from aniline, an aldehyde and diethyl acetylenedicarboxylate in an ethanolic citric acid solution under ultrasound irradiation. Green Chem. 18, 3582–3593 (2016)

    Article  CAS  Google Scholar 

  43. L. Wen, Zh..R. Li, M. Li, H. Cao, Solvent-free and efficient synthesis of imidazo[1,2-a]pyridine derivatives via a one-pot three-component reaction. Green Chem. 14, 707–716 (2012)

    Article  CAS  Google Scholar 

  44. A. Palmieri, S. Gabrielli, C. Cimarelli, R. Ballini, Fast, mild, eco-friendly synthesis of polyfunctionalized pyrroles from β-nitroacrylates and β-enaminones. Green Chem. 13, 3333–3336 (2011)

    Article  CAS  Google Scholar 

  45. A. Ramazani, A. Mahyari, A. Farshadi, M. Rouhani, Preparation of silica nanoparticles from organic laboratory waste of silica gel HF254 and their use as a highly efficient catalyst for the one-pot synthesis of 2,3-dihydro-1H-isoindolone derivatives. Helv. Chim. Acta. 94, 1831–1838 (2011)

    Article  CAS  Google Scholar 

  46. M. Yurdakoc, M. Akcay, Y. Tonbul, K. Yurdakoc, Acidity of silica-alumina catalysts by amine titration using hammett indicators and FT-IR study of pyridine adsorption., Turk. J. Chem., 23: 319–327 (1999)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Science and Research Branch, Islamic Azad University for the support and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Rouhani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouhani, M., Ramazani, A. Perlite–SO3H nanoparticles: very efficient and reusable catalyst for three-component synthesis of N-cyclohexyl-3-aryl-quinoxaline-2-amine derivatives under ultrasound irradiation. J IRAN CHEM SOC 15, 2375–2382 (2018). https://doi.org/10.1007/s13738-018-1426-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1426-8

Keywords

Navigation