Skip to main content

Advertisement

Log in

A molecular dynamics investigation on the interaction properties of AzrC and its cofactor

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this report, the main contributions of FMN were employed in the reductive cleavage reaction of AzrC protein (as a member of azoreductase family). Molecular dynamics simulations of three models in the presence and absence of FMN and ligand were performed to gather information about the dynamic nature of active site residues of AzrC. Combination of pairwise decomposition and alanine scanning calculations provides critical information about the FMN binding sites. The MD results analyzed by alanine scanning method revealed the high negative scores for N 10 (A) A, N 12 (A) A, S 17 (A) A and Y 151 (A) A mutations, which were in agreement with pairwise decomposition analyses. Hydrogen bond analyses indicated that these residues play critical roles in establishing appropriate hydrogen bonds between AzrC and FMN. Negative energy results for nonpolar residues such as W 103 (A), M 102 (A) and F 105 (A) and binding free energy analyses of three complexes indicate that the VDW interactions could be regarded as some favorable contribution in FMN and AzrC protein and confirmed the critical role of FMN in ligand binding (35.84 %), in addition to its catalytic function. This information could be used for future experimental investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. V. Brissos, N. Gonçalves, E.P. Melo, L.O. Martins, Improving kinetic or thermodynamic stability of an azoreductase by directed evolution. PLoS ONE 9, e87209 (2014)

    Article  Google Scholar 

  2. D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz, A. Onufriev, C. Simmerling, B. Wang, R.J. Woods, The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005)

    Article  CAS  Google Scholar 

  3. K.C. Chen, J.Y. Wu, D.J. Liou, S.C.J. Hwang, Decolorization of the textile dyes by newly isolated bacterial strains. J. Biotechnol. 101, 57–68 (2003)

    Article  CAS  Google Scholar 

  4. T. Darden, D. York, L. Pedersen, Particle mesh Ewald: an N· log (N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993)

    Article  CAS  Google Scholar 

  5. A.B. dos Santos, F.J. Cervantes, J.B. van Lier, Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour. Technol. 98, 2369–2385 (2007)

    Article  Google Scholar 

  6. H. Gohlke, C. Kiel, D.A. Case, Insights into protein–protein binding by binding free energy calculation and free energy decomposition for the Ras–Raf and Ras–RalGDS complexes. J. Mol. Biol. 330, 891–913 (2003)

    Article  CAS  Google Scholar 

  7. V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, C. Simmerling, Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65, 712–725 (2006)

    Article  CAS  Google Scholar 

  8. W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    Article  CAS  Google Scholar 

  9. A. Jakalian, D.B. Jack, C.I. Bayly, Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem. 23, 1623–1641 (2002)

    Article  CAS  Google Scholar 

  10. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983)

    Article  CAS  Google Scholar 

  11. W. Kabsch, C. Sander, Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983)

    Article  CAS  Google Scholar 

  12. Y.M. Kolekar, P.D. Konde, V.L. Markad, S.V. Kulkarni, A.U. Chaudhari, K.M. Kodam, Effective bioremoval and detoxification of textile dye mixture by Alishewanella sp. KMK6. Appl. Microbiol. Biotechnol. 97, 881–889 (2013)

    Article  CAS  Google Scholar 

  13. P.A. Kollman, I. Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong, M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D.A. Case, T.E. Cheatham 3rd, Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res. 33, 889–897 (2000)

    Article  CAS  Google Scholar 

  14. J. Kongsted, U. Ryde, An improved method to predict the entropy term with the MM/PBSA approach. J. Comput. Aided Mol. Des. 23, 63–71 (2009)

    Article  CAS  Google Scholar 

  15. G. Lamm, A. Szabo, Langevin modes of macromolecules. J. Chem. Phys. 85, 7334–7348 (1986)

    Article  CAS  Google Scholar 

  16. L. Li, V.N. Uversky, A.K. Dunker, S.O. Meroueh, A computational investigation of allostery in the catabolite activator protein. J. Am. Chem. Soc. 129, 15668–15676 (2007)

    Article  CAS  Google Scholar 

  17. Z.J. Liu, H. Chen, N. Shaw, S.L. Hopper, L. Chen, S. Chen, C.E. Cerniglia, B.C. Wang, Crystal structure of an aerobic FMN-dependent azoreductase (AzoA) from Enterococcus faecalis. Arch. Biochem. Biophys. 463, 68–77 (2007)

    Article  CAS  Google Scholar 

  18. I. Massova, P.A. Kollman, Computational alanine scanning to probe protein-protein interactions: a novel approach to evaluate binding free energies. J. Am. Chem. Soc. 121, 8133–8143 (1999)

    Article  CAS  Google Scholar 

  19. K. Matsumoto, Y. Mukai, D. Ogata, F. Shozui, J.M. Nduko, S. Taguchi, T. Ooi, Characterization of thermostable FMN-dependent NADH azoreductase from the moderate thermophile Geobacillus stearothermophilus. Appl. Microbiol. Biotechnol. 86, 1431–1438 (2010)

    Article  CAS  Google Scholar 

  20. G.M. Morris, D.S. Goodsell, R. Huey, A.J. Olson, Distributed automated docking of flexible ligands to proteins: parallel applications of AutoDock 2.4. J. Comput. Aided Mol. Des. 10, 293–304 (1996)

    Article  CAS  Google Scholar 

  21. D. Ogata, T. Ooi, T. Fujiwara, S. Taguchi, I. Tanaka, M. Yao, Crystallization and preliminary X-ray studies of azoreductases from Bacillus sp. B29. Acta Crystallogr., Sect. F: Struct. Biol. Cryst. Commun. 66, 503–505 (2010)

    Article  CAS  Google Scholar 

  22. T. Ooi, T. Shibata, R. Sato, H. Ohno, S. Kinoshita, T.L. Thuoc, S. Taguchi, An azoreductase, aerobic NADH-dependent flavoprotein discovered from Bacillus sp.: functional expression and enzymatic characterization. Appl. Microbiol. Biotechnol. 75, 377–386 (2007)

    Article  CAS  Google Scholar 

  23. D.A. Pearlman, D.A. Case, J.W. Caldwell, W.S. Ross, T.E. Cheatham III, S. DeBolt, D. Ferguson, G. Seibel, P. Kollman, AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput. Phys. Commun. 91, 1–41 (1995)

    Article  CAS  Google Scholar 

  24. J.N. Roberts, R. Singh, J.C. Grigg, M.E. Murphy, T.D. Bugg, L.D. Eltis, Characterization of dye-decolorizing peroxidases from Rhodococcus jostii RHA1. Biochemistry 50, 5108–5119 (2011)

    Article  CAS  Google Scholar 

  25. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77, 247–255 (2001)

    Article  CAS  Google Scholar 

  26. A. Ryan, C.J. Wang, N. Laurieri, I. Westwood, E. Sim, Reaction mechanism of azoreductases suggests convergent evolution with quinone oxidoreductases. Protein Cell 1, 780–790 (2010)

    Article  CAS  Google Scholar 

  27. J.P. Ryckaert, G. Ciccotti, H.J. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of-alkanes. J. Comput. Phys. 23, 327–341 (1977)

    Article  CAS  Google Scholar 

  28. S. Mahmood, A. Khalid, M. Arshad, T. Mahmood, D.E. Crowley, Bacterial decolorization and degradation of azo dyes: a review. Crit. Rev. Biotechnol. 42, 138–157 (2011)

    Google Scholar 

  29. I. Stoica, S.K. Sadiq, P.V. Coveney, Rapid and accurate prediction of binding free energies for saquinavir-bound HIV-1 proteases. J. Am. Chem. Soc. 130, 2639–2648 (2008)

    Article  CAS  Google Scholar 

  30. J. Wang, W. Wang, P.A. Kollman, D.A. Case, Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 25, 247–260 (2006)

    Article  Google Scholar 

  31. J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004)

    Article  CAS  Google Scholar 

  32. J. Yu, D. Ogata, Z. Gai, S. Taguchi, I. Tanaka, T. Ooi, M. Yao, Structures of AzrA and of AzrC complexed with substrate or inhibitor: insight into substrate specificity and catalytic mechanism. Acta Crystallogr. D Biol. Crystallogr. 70, 553–564 (2014)

    Article  CAS  Google Scholar 

  33. V. Zoete, O. Michielin, Comparison between computational alanine scanning and per-residue binding free energy decomposition for protein–protein association using MM-GBSA: application to the TCR-p-MHC complex. Proteins 67, 1026–1047 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Tavakol.

Additional information

Fariba Dehghanian and Maryam Kay are contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 789 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghanian, F., Haghshenas, H., Kay, M. et al. A molecular dynamics investigation on the interaction properties of AzrC and its cofactor. J IRAN CHEM SOC 13, 2143–2153 (2016). https://doi.org/10.1007/s13738-016-0932-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-016-0932-9

Keywords

Navigation