Skip to main content
Log in

Properties and biodegradation modeling of abiotically treated modified-cobalt stearate filled polypropylene films

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The present work studies the effects of abiotic pretreatment on the properties and biodegradability of the modified cobalt stearate pro-degradant filled polypropylene films, and on the eco-toxicity of their biodegraded products. Before abiotic pretreatment, their processability was confirmed by rheological studies. After abiotic pretreatment, FTIR revealed their carbonyl index increased on increasing the pro-degradant loading. Their GPC results showed significant decrease in molecular weight, thus indicating chain scission and intermediate formation. Their thermal stability also reduced as demonstrated by TGA. Their DSC and XRD analyses showed decreased crystallinity thereby indicating increased biodegradability. Their biodegradation was measured following ASTM D 5338, which showed a significant increase with abiotic pretreatment and the same was substantiated by GPC. The biodegradation kinetics followed Komilis model which showed that the degradation rate reached a maximum of 0.407–0.730% per day at 15–25th day. Readily hydrolysable carbon and its hydrolysis rate constant substantially enhanced with modified pro-degradant content. High readily hydrolyzable carbon rate constant caused the occurrence of a prominent growth phase. SEM also confirmed that the surface morphology of each film became increasingly rougher subsequent to both abiotic and biotic treatments, and with increasing pro-degradant loading. The eco-toxicity tests confirmed the nontoxicity of biodegraded products. The work thus illustrated that the films can have useful packaging applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ASTM:

American Society for Testing and Materials

CaSt:

Calcium stearate

CEL:

Microcrystalline cellulose

CFU:

Colony forming units

CoSt:

Cobalt stearate

CuSt:

Copper stearate

DDR:

Draw-down ratio

DSC:

Differential scanning calorimetry

DTA:

Differential thermal analysis

DTG:

Differential themogravimetry

FeSt:

Iron stearate

FTIR:

Fourier transform infrared

HDPE:

High-density polyethylene

HT-GPC:

High-temperature gel permeation chromatography

ISO:

International Organization for Standardization

LDPE:

Low-density polyethylene

LLDPE:

Linear low-density polyethylene

MFI:

Melt flow index

MgSt:

Magnesium stearate

MnSt:

Manganese stearate

OECD:

Organization for Economic Cooperation and Development

PDI:

Polydispersity index

PE:

Polyethylene

PDI:

Polydispersity index

PHA:

Poly(hydroxyalkanoates)

PHB:

Poly(3-hydroxybutyrate)

phr:

Parts per hundred of resin

PLA:

Polylactic acid/polylactide

PP:

Polypropylene

RID:

Refractive index detector

SEM:

Scanning electron microscopy

TG:

Thermogravimetry

TGA:

Thermogravimetric analysis

TOC:

Total organic carbon

UV:

Ultraviolet

XRD:

X-ray diffraction

ZnSt:

Zinc stearate

C :

Duration of lag phase during the initial phase of biodegradation before the onset of CO2 production

C aq0 :

Initial mineralizable intermediate carbon (%)

C m0 :

Initial moderately hydrolysable solid carbon (%)

CO 2 :

Carbon dioxide

CO 2 (Th) :

Theoretical carbon dioxide

C r0 :

Initial readily hydrolysable solid carbon (%)

C s0 :

Initial slowly hydrolysable solid carbon (%)

Da :

Dalton

G' :

Storage modulus

G" :

Loss modulus

\(\Delta H_{c}\) :

Enthalpy of crystallization

\(\Delta H_{f}\) :

Enthalpy of fusion

k aq :

Rate constant for mineralizable water-soluble C-CO2

k m :

Moderately first-order hydrolysis rate constant

k r :

Readily first-order hydrolysis rate constant

k s :

Slowly first-order hydrolysis rate constant

\(\overline{{M_{n} }}\) :

Number average molecular weight

\(\overline{{M_{w} }}\) :

Weighted average molecular weight

MPa :

Mega Pascal

T :

Absolute temperature (K)

T c :

Crystallization temperature

T g :

Glass transition temperature

T i :

Initial degradation temperature

T m :

Melting temperature

\(T_{\max }\) :

Maximum degradation temperature

T f :

Final degradation temperature

X c :

Degree of crystallinity

References

  1. Hejna A, Barczewski M, Kosmela P, Mysiukiewicz O, Aniśko J, Sulima P, Przyborowski JA, Saeb MR (2022) The impact of thermomechanical and chemical treatment of waste Brewers’ spent grain and soil biodegradation of sustainable mater-Bi-based biocomposites. Waste Manag 154:260–271

    Article  CAS  PubMed  Google Scholar 

  2. Song YK, Hong SH, Eo S, Shim WJ (2023) Fragmentation of nano-and microplastics from virgin-and additive-containing polypropylene by accelerated photooxidation. Environ Pollut 327:121590

    Article  CAS  PubMed  Google Scholar 

  3. Darwish MSA, Mostafa MH, Hussein LI, Abdaleem AH, Elsawy MA (2021) Preparation, characterization, mechanical and biodegradation behavior of polypropylene-chitosan/ZnO nanocomposite. Polym-Plast Technol Mater 60:1630–1640

    CAS  Google Scholar 

  4. Subramaniam M, Sharma S, Gupta A, Abdullah N (2018) Enhanced degradation properties of polypropylene integrated with iron and cobalt stearates and its synthetic application. J Appl Polym Sci 135:46028

    Article  Google Scholar 

  5. Antelava A, Constantinou A, Bumajdad A, Manos G, Dewil R, Al-Salem SM (2020) Identification of commercial oxo-biodegradable plastics: study of UV induced degradation in an effort to combat plastic waste accumulation. J Polym Environ 28:2364–2376

    Article  CAS  Google Scholar 

  6. Gioia C, Giacobazzi G, Vannini M, Totaro G, Sisti L, Colonna M, Marchese P, Celli A (2021) End of life of biodegradable plastics: composting versus Re/upcycling. Chemsuschem 14:4167–4175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jain K, Bhunia H, Sudhakara Reddy M (2018) Degradation of polypropylene–poly-L-lactide blend by bacteria isolated from compost. Bioremed J 22:73–90

    Article  CAS  Google Scholar 

  8. Xian Z-N, Yin C-F, Zheng L, Zhou N-Y, Xu Y (2023) Biodegradation of additive-free polypropylene by bacterial consortia enriched from the ocean and from the gut of Tenebrio molitor larvae. Sci Total Environ 892:164721

    Article  CAS  PubMed  Google Scholar 

  9. Wu Z, Shi W, Valencak TG, Zhang Y, Liu G, Ren D (2023) Biodegradation of conventional plastics: candidate organisms and potential mechanisms. Sci Total Environ 885:163908

    Article  CAS  PubMed  Google Scholar 

  10. Sable S, Ahuja S, Bhunia H (2020) Biodegradation kinetic modeling of acrylic acid-grafted polypropylene during thermophilic phase of composting. Iran Polym J 29:735–747

    Article  CAS  Google Scholar 

  11. Rana AK, Thakur MK, Saini AK, Mokhta SK, Moradi O, Rydzkowski T, Alsanie WF, Wang Q, Grammatikos S, Thakur VK (2022) Recent developments in microbial degradation of polypropylene: integrated approaches towards a sustainable environment. Sci Total Environ 826:154056

    Article  CAS  PubMed  Google Scholar 

  12. Khosravi A, Fereidoon A, Khorasani MM, Naderi G, Ganjali MR, Zarrintaj P, Saeb MR, Gutiérrez TJ (2020) Soft and hard sections from cellulose-reinforced poly(lactic acid)-based food packaging films: a critical review. Food Packag Shelf Life 23:100429

    Article  Google Scholar 

  13. Mandal DK, Bhunia H, Bajpai PK, Kumar A, Madhu G, Nando GB (2018) Biodegradation of pro-oxidant filled polypropylene films and evaluation of the ecotoxicological impact. J Polym Environ 26:1061–1071

    Article  CAS  Google Scholar 

  14. Hayoune F, Chelouche S, Trache D, Zitouni S, Grohens Y (2020) Thermal decomposition kinetics and lifetime prediction of a PP/PLA blend supplemented with iron stearate during artificial aging. Thermochim Acta 690:178700

    Article  CAS  Google Scholar 

  15. Ammala A, Bateman S, Dean K, Petinakis E, Sangwan P, Wong S, Yuan Q, Yu L, Patrick C, Leong KH (2011) An overview of degradable and biodegradable polyolefins. Progress Polym Sci 36:1015–1049

    Article  CAS  Google Scholar 

  16. Fontanella S, Bonhomme S, Brusson J-M, Pitteri S, Samuel G, Pichon G, Lacoste J, Fromageot D, Lemaire J, Delort A-M (2013) Comparison of biodegradability of various polypropylene films containing pro-oxidant additives based on Mn, Mn/Fe or Co. Polym Degrad Stabil 98:875–884

    Article  CAS  Google Scholar 

  17. Nguyen DM, Do TVV, Grillet A-C, Thuc HH, Thuc CNH (2016) Biodegradability of polymer film based on low density polyethylene and cassava starch. Inter Biodeter Biodegrad 115:257–265

    Article  CAS  Google Scholar 

  18. Contat-Rodrigo L (2013) Thermal characterization of the oxo-degradation of polypropylene containing a pro-oxidant/pro-degradant additive. Polym Degrad Stabil 98:2117–2124

    Article  CAS  Google Scholar 

  19. Al-Salem SM, Sultan HH, Karam HJ, Al-Dhafeeri AT (2019) Determination of biodegradation rate of commercial oxo-biodegradable polyethylene film products using ASTM D 5988. J Polym Res 26:157

    Article  Google Scholar 

  20. Kalita NK, Bhasney SM, Mudenur C, Kalamdhad A, Katiyar V (2020) End-of-life evaluation and biodegradation of poly(lactic acid)(PLA)/polycaprolactone(PCL)/microcrystalline cellulose (MCC) polyblends under composting conditions. Chemosphere 247:125875

    Article  CAS  PubMed  Google Scholar 

  21. Arutchelvi J, Sudhakar M, Arkatkar A, Doble M, Bhaduri S, Uppara PV (2008) Biodegradation of polyethylene and polypropylene. Indian J Biotechnol 7:9–22

    CAS  Google Scholar 

  22. Mandal DK, Bhunia H, Bajpai PK, Chaudhari CV, Dubey KA, Varshney L (2018) Morphology, rheology and biodegradation of oxo-degradable polypropylene/polylactide blends. J Polym Eng 38:239–249

    Article  CAS  Google Scholar 

  23. Sable S, Mandal DK, Ahuja S, Bhunia H (2019) Biodegradation kinetic modeling of oxo-biodegradable polypropylene/polylactide/nanoclay blends and composites under controlled composting conditions. J Environ Manag 249:109186

    Article  CAS  Google Scholar 

  24. Sable S, Ahuja S, Bhunia H (2021) Preparation and characterization of oxo-degradable polypropylene composites containing a modified pro-oxidant. J Polym Environ 29:721–733

    Article  CAS  Google Scholar 

  25. Fechine GJM, Rosa DS, Rezende ME, Demarquette NR (2009) Effect of UV radiation and pro-oxidant on PP biodegradability. Polym Eng Sci 49:123–128

    Article  CAS  Google Scholar 

  26. Bensaad F, Belhaneche-Bensemra N (2018) Effects of calcium stearate as pro-oxidant agent on the natural aging of polypropylene. J Polym Eng 38:715–721

    Article  CAS  Google Scholar 

  27. Sable S, Ahuja S, Bhunia H (2020) Studies on biodegradability of cobalt stearate filled polypropylene after abiotic treatment. J Polym Environ 28:2236–2252

    Article  CAS  Google Scholar 

  28. Islam NM, Othman N, Ahmad Z, Ismail H (2010) Effect of pro-degradant additives concentration on aging properties of polypropylene films. Polym Plast Technol Eng 49:272–278

    Article  CAS  Google Scholar 

  29. Montagna LS, Catto AL, de Camargo Forte MM, Chiellini E, Corti A, Morelli A, Campomanes Santana RM (2015) Comparative assessment of degradation in aqueous medium of polypropylene films doped with transition metal free (experimental) and transition metal containing (commercial) pro-oxidant/pro-degradant additives after exposure to controlled UV radiation. Polym Degrad Stabil 120:186–192

    Article  CAS  Google Scholar 

  30. Moo-Tun NM, Valadez-González A, Uribe-Calderon JA (2018) Thermo-oxidative aging of low density polyethylene blown films in presence of cellulose nanocrystals and a pro-oxidant additive. Polym Bull 75:3149–3169

    Article  CAS  Google Scholar 

  31. Madhu G, Bhunia H, Bajpai PK, Nando GB (2016) Physico-mechanical properties and biodegradation of oxo-degradable HDPE/PLA blends. Polym Sci Ser A 58:57–75

    Article  CAS  Google Scholar 

  32. Komilis DP (2006) A kinetic analysis of solid waste composting at optimal conditions. Waste Manag 26:82–91

    Article  CAS  PubMed  Google Scholar 

  33. Leejarkpai T, Suwanmanee U, Rudeekit Y, Mungcharoen T (2011) Biodegradable kinetics of plastics under controlled composting conditions. Waste Manag 31:1153–1161

    Article  CAS  PubMed  Google Scholar 

  34. Al-Salem SM, Al-Hazza’a A, Karam HJ, Al-Wadi MH, Al-Dhafeeri A, Al-Rowaih AA (2019) Insights into the evaluation of the abiotic and biotic degradation rate of commercial pro-oxidant filled polyethylene (PE) thin films. J Environ Manag 250:109475

    Article  CAS  Google Scholar 

  35. Ahuja S, Arya RK (2018) Laplace Transform treatment for chemical engineering systems: whether to use 0− or 0+? Chem Eng Technol 41:875–882

    Article  CAS  Google Scholar 

  36. Ahuja S (2015) Discontinuity analysis for the treatment of nonlinear lumped-parameter systems for singular inputs. Theor Found Chem Eng 49:612–621

    Article  CAS  Google Scholar 

  37. Ahuja S, Arya RK (2017) Comparison of the performances of different reduced forms of a condenser model. Chem EngTechnoL 40:1630–1637

    CAS  Google Scholar 

  38. Sable S, Ahuja S, Bhunia H (2021) Biodegradation kinetic modeling of pro-oxidant filled polypropylene composites under thermophilic composting conditions after abiotic treatment. Environ Sci Pollut Res 28:21231–21244

    Article  CAS  Google Scholar 

  39. Mandal DK, Bhunia H, Bajpai PK, Chaudhari CV, Dubey KA, Varshney L, Kumar A (2021) Preparation and characterization of polypropylene/polylactide blends and nanocomposites and their biodegradation study. J Thermoplast Compos Mater 34:725–744

    Article  CAS  Google Scholar 

  40. OECD test No. 208 (2006) Terrestial plant growth test: guideline for testing chemicals. Plant growth test, Paris. https://doi.org/10.1787/9789264070066-en

    Article  Google Scholar 

  41. OECD test No. 207 (1984) Guideline for testing chemicals. Earthworm, acute toxicity tests. Paris. https://doi.org/10.1787/9789264070042-en

  42. Liu W, Liu B, Wang X (2013) Morphology, rheological properties, and crystallization behavior of polypropylene/clay nanocomposites. Inter J Polym Mater 62:164–171

    Article  Google Scholar 

  43. Arkatkar A, Arutchelvi J, Bhaduri S, Uppara PV, Doble M (2009) Degradation of unpretreated and thermally pretreated polypropylene by soil consortia. Inter Biodeter Biodegrad 63:106–111

    Article  CAS  Google Scholar 

  44. Sudhakar M, Trishul A, Doble M, Kumar KS, Jahan SS, Inbakandan D, Viduthalai RR, Umadevi VR, Murthy PS, Venkatesan R (2007) Biofouling and biodegradation of polyolefins in ocean waters. Polym Degrad Stabil 92:1743–1752

    Article  CAS  Google Scholar 

  45. Islam NZM, Othman N, Ahmad Z, Ismail H (2011) Effect of pro-degradant additive on photo-oxidative aging of polypropylene film. Sains Malaysiana 40:803–808

    CAS  Google Scholar 

  46. Santhoskumar AU, Palanivelu K (2012) A new additive formulation to enhance photo and biodegradation characteristics of polypropylene. Inter J Polym Mater Polym Biomater 61:793–808

    Article  CAS  Google Scholar 

  47. Das MP, Kumar S (2013) Comparative study of germination rate and plant growth by secondary metabolites and in vitro LDPE biodegraded fragments by microbes. Int J Pharm Sci Rev Res 21:134–136

    CAS  Google Scholar 

  48. Montagna LS, da Camargo Forte MM, Santana RMC (2013) Induced degradation of polypropylene with an organic pro-degradant additive. J Mater Sci Eng A 3:123–131

    Google Scholar 

  49. Rosa DS, Grillo D, Bardi MAG, Calil MR, Guedes CGF, Ramires EC, Frollini E (2009) Mechanical, thermal and morphological characterization of polypropylene/biodegradable polyester blends with additives. Polym Test 28:836–842

    Article  CAS  Google Scholar 

  50. Pablos JL, Abrusci C, Marín I, López-Marín J, Catalina F, Espí E, Corrales T (2010) Photodegradation of polyethylenes: comparative effect of Fe and Ca-stearates as pro-oxidant additives. Polym Degrad Stabil 95:2057–2064

    Article  CAS  Google Scholar 

  51. Jain K, Madhu G, Bhunia H, Bajpai PK, Nando GB, Reddy MS (2015) Physico-mechanical characterization and biodegradability behavior of polypropylene/poly(L-lactide) polymer blends. J Polym Eng 35:407–415

    Article  CAS  Google Scholar 

  52. Sugumaran V, Bhunia H, Narula AK (2018) Evaluation of Biodegradability of Potato Peel Powder Based Polyolefin Biocomposites. J Polym Environ 26:2049–2060

    Article  CAS  Google Scholar 

  53. Kalita NK, Bhasney SM, Kalamdhad A, Katiyar V (2020) Biodegradable kinetics and behavior of bio-based polyblends under simulated aerobic composting conditions. J Environ Manag 261:110211

    Article  CAS  Google Scholar 

  54. Muthukumar T, Aravinthan A, Mukesh D (2010) Effect of environment on the degradation of starch and pro-oxidant blended polyolefins. Polym Degrad Stabil 95:1988–1993

    Article  CAS  Google Scholar 

  55. El-Arnaouty M, Abdel Ghaffar A, El Shafey HM (2008) Radiation-induced graft copolymerization of acrylic acid/acrylonitrile onto LDPE and PET films and its biodegradability. J Appl Polym Sci 107:744–754

    Article  CAS  Google Scholar 

  56. Arráez FJ, Arnal ML, Müller AJ (2018) Thermal and UV degradation of polypropylene with pro-oxidant. Abiotic characterization. J Appl Polym Sci 135:46088

    Article  Google Scholar 

  57. Stloukal P, Pekařová S, Kalendova A, Mattausch H, Laske S, Holzer C, Chitu L, Bodner S, Maier G, Slouf M, Koutny M (2015) Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process. Waste Manag 42:31–40

    Article  CAS  PubMed  Google Scholar 

  58. Stloukal P, Jandikova G, Koutny M, Sedlařík V (2016) Carbodiimide additive to control hydrolytic stability and biodegradability of PLA. Polym Test 54:19–28

    Article  CAS  Google Scholar 

  59. Stloukal P, Kucharczyk P (2017) Acceleration of polylactide degradation under biotic and abiotic conditions through utilization of a new, experimental, highly compatible additive. Polym Degrad Stabil 142:217–225

    Article  CAS  Google Scholar 

  60. Commereuc S, Vaillant D, Philippart JL, Lacoste J, Lemaire J, Carlsson DJ (1997) Photo and thermal decomposition of iPP hydroperoxides. Polym Degrad Stabil 57:175–182

    Article  CAS  Google Scholar 

  61. Kalita NK, Nagar MK, Mudenur C, Kalamdhad A, Katiyar V (2019) Biodegradation of modified poly(lactic acid) based biocomposite films under thermophilic composting conditions. Polym Test 76:522–536

    Article  CAS  Google Scholar 

  62. Benítez A, Sánchez JJ, Arnal ML, Müller AJ, Rodríguez O, Morales G (2013) Abiotic degradation of LDPE and LLDPE formulated with a pro-oxidant additive. Polym Degrad Stabil 98:490–501

    Article  Google Scholar 

  63. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, UK

    Google Scholar 

Download references

Acknowledgements

The project file number for this research work is 22(00745)/17/EMR-II, and all of the authors are grateful to CSIR (GoI) for financial support. For his invaluable advice, we especially thank Dr. P. K. Bajpai, retired professor at TIET in Patiala, Punjab. For the compounding facilities used in this work, we would want to thank Dr. V. Goel of IOCL Faridabad, India.

Funding

All the data obtained and generated during this study are provided in the paper and supplementary material. Any clarification will be provided on reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Ahuja.

Ethics declarations

Conflict of interest

No conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3415 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sable, S., Ahuja, S. Properties and biodegradation modeling of abiotically treated modified-cobalt stearate filled polypropylene films. Iran Polym J 32, 1607–1626 (2023). https://doi.org/10.1007/s13726-023-01228-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-023-01228-y

Keywords

Navigation