Skip to main content
Log in

Perspective on opportunities of bio-based processing oil to rubber industry: a short review

  • Review
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Bio-based oils have recently attained interest due to rising environmental concerns and the depletion of petrochemical resources. Bio-based oils high in unsaturated fatty acids, including palm oil, soybean oil, castor oil, sunflower oil, and linseed oil, have attracted attention as an alternative to petroleum-based processing oils in rubber composites. Elastomers could potentially employ bio-based oil instead of mineral oil derived from petroleum in the future as a plasticizer. Mineral oil has a reputation for being damaging to the environment and for being a resource that does not replenish itself. Even though bio-based process oils have some benefits, they are not used very often in the rubber industry because they are cold-flowing oils with low thermo-oxidation, hydrolytic stability, and a plasticizing effect that could mess up rubber processes. However, modification of the carbon–carbon double bond in bio-based oils can improve both the processability and mechanical properties of rubber composites. Thus, this study addresses cure properties in general, emphasizing cure rate, delta torque, scorch time, and cure rate index (CRI) of unmodified and modified bio-based oils in various rubber composites. The wet skid and rolling resistance performance of rubber composites used in tyre tread applications are detailed by the tanδ values at 0 and 60 ℃ from the laboratory dynamic mechanical analysis (DMA) tests. There are often compromises between tyre rolling resistance and tyre wet traction. Therefore, academics and professionals in the bio-based processing oils and rubber industries will benefit from this evaluation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cottrill S (2021) Rubber industry commits to carbon neutrality by 2050 rubber news. In: Rubber news. https://www.rubbernews.com/sustainability/rubber-industry-commits-carbon-neutrality-2050. Accessed 20 May 2022

  2. Schniewind H (2021) Sustainable. Lightweight. Efficient. World premiere of Continental’s tire concept Conti GreenConcept at IAA—Continental AG. In: Continental. https://www.continental.com/en/press/press-releases/20210906-tires-greenconcept/. Accessed 20 May 2022

  3. Mohamad Aini NA, Othman N, Hussin MH, Sahakaro K, Hayeemasae N (2020) Lignin as alternative reinforcing filler in the rubber industry: a review. Front Mater 6:329. https://doi.org/10.3389/fmats.2019.00329

    Article  Google Scholar 

  4. Espósito LH, Marzocca AJ (2020) Silica-filled S-SBR with epoxidized soybean oil: influence of the mixing process on rheological and mechanical properties of the compound. J Appl Polym Sci 137:1–10. https://doi.org/10.1002/app.48504

    Article  CAS  Google Scholar 

  5. Mohamad Aini NA, Othman N, Hussin MH, Sahakaro K, Hayeemasae N (2022) Efficiency of interaction between hybrid fillers carbon black/lignin with various rubber-based compatibilizer, epoxidized natural rubber, and liquid butadiene rubber in NR/BR composites: mechanical, flexibility and dynamical properties. Ind Crops Prod 185:115167. https://doi.org/10.1016/j.indcrop.2022.115167

    Article  CAS  Google Scholar 

  6. Ridho MR, Agustiany EA, Rahmi Dn M, Madyaratri EW, Ghozali M, Restu WK, Falah F, Rahandi Lubis MA, Syamani FA, Nurhamiyah Y, Hidayati S, Sohail A, Karungamye P, Nawawi DS, Iswanto AH, Othman N, Mohamad Aini NA, Hussin MH, Sahakaro K, Hayeemasae N, Ali MQ, Fatriasari W (2022) Lignin as green filler in polymer composites: development methods, characteristics, and potential applications. Adv Mater Sci Eng 2022:1363481. https://doi.org/10.1155/2022/1363481

    Article  CAS  Google Scholar 

  7. Aini NAM, Othman N, Hussin MH, Sahakaro K, Hayeemasae N (2020) Influence of hydroxymethylated lignin on mechanical properties and Payne effect of Nr/Br compounds. Malaysian J Anal Sci 24:810–819

    Google Scholar 

  8. Hayichelaeh C (2018) Silica-reinforced natural rubber tire compounds with safe compounding ingredients. University of Twente

  9. Sahakaro K, Beraheng A (2011) Epoxidized natural oils as the alternative safe process oils in rubber compounds. Rubber Chem Technol 84:200–214. https://doi.org/10.5254/1.3577518

    Article  CAS  Google Scholar 

  10. Hofmann W (1989) Rubber technology handbook. Hanser Publishers, München, Wien, New York

  11. Pechurai W, Chiangta W, Tharuen P (2015) Effect of vegetable oils as processing aids in SBR compounds. Macromol Symp 354:191–196. https://doi.org/10.1002/masy.201400079

    Article  CAS  Google Scholar 

  12. Öter M, Karaagac B, Deniz V (2011) Substitution of aromatic processing oils in rubber compounds. KGK, Kaut Gummi Kunstst 64:48–51

    Google Scholar 

  13. Borenius P (2018) Bio-based and renewable plasticizers in rubbers and elastomers. Tampere University of Technology

  14. Petchkaew A, Sahakaro K, Noordermeer JWM (2013) Petroleum-based safe process oils in NR, SBR and their blends: study on unfilled compounds: part II, properties. KGK, Kaut Gummi Kunstst 66:21–27

    Google Scholar 

  15. Dasgupta S, Agrawal SL, Bandyopadhyay S, Chakraborty S, Mukhopadhyay R, Malkani RK, Ameta SC (2007) Characterization of eco-friendly processing aids for rubber compound. Polym Test 26:489–500. https://doi.org/10.1016/j.polymertesting.2007.01.007

    Article  CAS  Google Scholar 

  16. Klinegroup (2019) Global rubber process oils: market analysis and opportunities. https://klinegroup.com/reports/global_rubber_process_oils. Accessed 3 Aug 2022

  17. Huang R, Long Y, Feng K, Pan Q, Chen Z (2021) Fatty acid benzyl esters as bio-based plasticizers in silica-filled solution-polymerized styrene-butadiene rubber/butadiene rubber composites. J Vinyl Addit Technol 27:68–76. https://doi.org/10.1002/vnl.21784

    Article  CAS  Google Scholar 

  18. Boonrasri S, Sae-Oui P, Reungsang A, Rachtanapun P (2021) New vegetable oils with different fatty acids on natural rubber composite properties. Polymers 13:1–12. https://doi.org/10.3390/polym13071108

    Article  CAS  Google Scholar 

  19. Zainal NA, Zulki NWM, Gulzar M, Masjuki HH (2018) A review on the chemistry, production, and technological potential of bio-based lubricants. Renew Sustain Energy Rev 82:80–102. https://doi.org/10.1016/j.rser.2017.09.004

    Article  CAS  Google Scholar 

  20. Samarth NB, Mahanwar PA (2015) Modified vegetable oil based additives as a future polymeric material: review. Open J Org Polym Mater 05:1–22. https://doi.org/10.4236/ojopm.2015.51001

    Article  CAS  Google Scholar 

  21. Sovtić N, Predrag KS, Bera OJ, Pavličević JM, Govedarica OM, Jovičić MC, Govedarica DD (2020) A review of environmentally friendly rubber production using different vegetable oils. Polym Eng Sci 60:1097–1117. https://doi.org/10.1002/pen.25443

    Article  CAS  Google Scholar 

  22. Zhang C, Madbouly SA (2016) 2 Plant oil-based derivatives. Elsevier Inc

  23. Samsudin D, Ismail H, Othman N, Hamid ZAA (2018) The effects of glutamine palmitic acid content on properties of high density polyethylene/silica composites. J Vinyl Addit Technol 24:217–223. https://doi.org/10.1002/vnl.21553

    Article  CAS  Google Scholar 

  24. Douvartzides SL, Charisiou ND, Papageridis KN, Goula MA (2019) Green diesel: biomass feedstocks, production technologies, catalytic research, fuel properties and performance in compression ignition internal combustion engines. Energies 12:809. https://doi.org/10.3390/en12050809

    Article  CAS  Google Scholar 

  25. Glauber J, Laborde D, Mamun A (2022) The impact of the Ukraine crisis on the global vegetable oil market. In: IFPRI (International Food Policy Res. Institute). https://www.ifpri.org/blog/impact-ukraine-crisis-global-vegetable-oil-market. Accessed 13 Jun 2022

  26. Nihul PG, Mhaske ST, Shertukde VV (2014) Epoxidized rice bran oil (ERBO) as a plasticizer for poly(vinyl chloride) (PVC). Iran Polym J 23:599–608. https://doi.org/10.1007/s13726-014-0254-7

    Article  CAS  Google Scholar 

  27. Mohamed NR, Othman N, Shuib RK (2022) Synergistic effect of sunflower oil and soybean oil as alternative processing oil in the development of greener tyre tread compound. J Rubber Res 25:239–249. https://doi.org/10.1007/s42464-022-00168-1

    Article  CAS  Google Scholar 

  28. Echeverri DA, Inciarte HC, Gómez CL, Rios LA (2022) Development of glass fiber/unsaturated polyester-like resins based on modified castor oil. Iran Polym J 31:595–604. https://doi.org/10.1007/s13726-021-01016-6

    Article  CAS  Google Scholar 

  29. Pawar MS, Kadam AS, Singh PC, Kusumkar VV, Yemul OS (2016) Rigid polyurethane foams from cottonseed oil using bio-based chain extenders: a renewable approach. Iran Polym J 25:59–68. https://doi.org/10.1007/s13726-015-0401-9

    Article  CAS  Google Scholar 

  30. Al Jabri H, Khan S, Das P, Thaher MI, Quadir MA (2022) Effect of ethylene-vinyl acetate copolymer on kinematic viscosity and thermal stability of jojoba, date seed, and waste cooking oils in lubricant applications. Iran Polym J 31:261–273. https://doi.org/10.1007/s13726-021-00991-0

    Article  CAS  Google Scholar 

  31. Woma TY, Lawal SA, Abdulrahman AS, Olutoye MA, Ojapah MM (2019) Vegetable oil based lubricants: challenges and prospects. Tribol Online 14:60–70. https://doi.org/10.2474/trol.14.60

    Article  Google Scholar 

  32. Salimon J, Salih N (2009) Substituted esters of octadecanoic acid as potential biolubricants. Eur J Sci Res 31:273–277

    Google Scholar 

  33. Tan C, Nehdi IA (2012) The physicochemical properties of palm oil and its components. AOCS Press

  34. Syahir AZ, Zulkifli NWM, Masjuki HH, Kalam MA, Alabdulkarem A, Gulzar M, Khuong LS, Harith MH (2017) A review on bio-based lubricants and their applications. J Clean Prod 168:997–1016

    Article  CAS  Google Scholar 

  35. Hamid WA, Binti W (2022) 2022 Key trends and palm oil market direction. In: Malaysian Palm Oil Council. https://pointers.org.my/v3/report.php?id=363. Accessed 5 Nov 2022

  36. Montoya C, Cochard B, Flori A, Cros D, Lopes R, Cuellar T, Espeout S, Syaputra I, Villeneuve P, Pina M, Ritter E, Leroy T, Billotte N (2014) Genetic architecture of palm oil fatty acid composition in cultivated oil palm (Elaeis guineensis Jacq.) compared to its wild relative E. oleifera (H.B.K) Cortés. PLoS ONE 9:5412. https://doi.org/10.1371/journal.pone.0095412

    Article  CAS  Google Scholar 

  37. Noh A, Rajanaidu N, Kushairi A, Mohd Rafii Y, Mohd Din A, Mohd Isa ZA, Saleh G (2002) Variability in fatty acids composition, iodine value and carotene content in the MPOB oil palm germplasm collection from Angola. J Oil Palm Res 14:18–23

    Google Scholar 

  38. Oguma M, Lee YJ, Goto S (2012) An overview of biodiesel in Asian countries and the harmonization of quality standards. Int J Automot Technol 13:33–41

    Article  Google Scholar 

  39. Wang Z, Peng Y, Zhang L, Zhao Y, Vyzhimov R, Tan T, Fong H (2016) Investigation of palm oil as green plasticizer on the processing and mechanical properties of ethylene propylene diene monomer rubber. Ind Eng Chem Res 55:2784–2789. https://doi.org/10.1021/acs.iecr.5b04527

    Article  CAS  Google Scholar 

  40. Ismail H, Salmiah I (1999) Palm oil fatty acid as an activator in carbon black filled natural rubber compounds: effect of epoxidation. Int J Polym Mater Polym Biomater 43:115–125. https://doi.org/10.1080/00914039908012128

    Article  CAS  Google Scholar 

  41. Jayewardhana WGD, Perera GM, Edirisinghe DG, Karunanayake L (2009) Study on natural oils as alternative processing aids and activators in carbon black filled natural rubber. J Natl Sci Found Sri Lanka 37:187–193. https://doi.org/10.4038/jnsfsr.v37i3.1212

    Article  CAS  Google Scholar 

  42. Siwarote B, Sae-Oui P, Wirasate S, Suchiva K (2017) Effects of bio-based oils on processing properties and cure characteristics of silica-filled natural rubber compounds. J Rubber Res 20:1–19. https://doi.org/10.1007/bf03449138

    Article  CAS  Google Scholar 

  43. Ayunie MZN, Romli AZ, Wahab MA, Abidin MH (2013) Effect of epoxidized palm oils loading on the crosslink density and rebound resilience characteristic of SBR vulcanizates. Adv Mater Res 748:206–210. https://doi.org/10.4028/www.scientific.net/AMR.748.206

    Article  CAS  Google Scholar 

  44. Anis Nazurah MN, Romli AZ, Wahab MA, Abidin MH (2013) Effect of epoxidized palm oil (EPO) on tensile properties and density of rubber compounding. Adv Mater Res 812:216–220. https://doi.org/10.4028/www.scientific.net/AMR.812.216

    Article  CAS  Google Scholar 

  45. Boontawee H, Nakason C, Kaesaman A, Thitithammawong A, Chewchanwuttiwong S (2017) Benzyl esters of vegetable oils as processing oil in carbon black-filled SBR compounding: chemical modification, characterization, and performance. Adv Polym Technol 36:320–330. https://doi.org/10.1002/adv.21610

    Article  CAS  Google Scholar 

  46. Chandrasekara G, Mahanama MK, Edirisinghe DG, Karunanayake L (2011) Epoxidized vegetable oils as processing aids and activators in carbon-black filled natural rubber compounds. J Natl Sci Found Sri Lanka 39:243–250. https://doi.org/10.4038/jnsfsr.v39i3.3628

    Article  CAS  Google Scholar 

  47. The Goodyear Tire and Rubber Company (2017) Goodyear using soybean oil-based rubber in tires. https://www.goodyear.com.my/goodyear-using-soybean-oil-based-rubber-tires. Accessed 29 Oct 2022

  48. Li J, Isayev AI, Ren X, Soucek MD (2015) Modified soybean oil-extended SBR compounds and vulcanizates filled with carbon black. Polymer 60:144–156. https://doi.org/10.1016/j.polymer.2015.01.028

    Article  CAS  Google Scholar 

  49. Li J, Isayev AI, Ren X, Soucek MD (2016) Effect of norbornyl modified soybean oil on CB-filled chloroprene rubber. J Appl Polym Sci 133:43809. https://doi.org/10.1002/app.43809

    Article  CAS  Google Scholar 

  50. Li J, Isayev AI, Wang Q, Soucek MD (2018) Sustainable plasticizer for butyl rubber cured by phenolic resin. J Appl Polym Sci 135:45500. https://doi.org/10.1002/app.45500

    Article  CAS  Google Scholar 

  51. Shahbandeh M (2022) Vegetable oils: production worldwide 2012/13-2021/22, by type. https://www.statista.com/statistics/263933/production-of-vegetable-oils-worldwide-since-2000/. Accessed 22 Jul 2022

  52. Ghazali YBA (2015) Biobased products from rubber, jatropha and sunflower oil. University of Groningen

  53. Rahmah M, Norazira WZ, Nur Ashyikin S, Norizan MN (2013) Aromatic and epoxidised oil curing and rebound resilience characteristic and their humidity effect of hardness on NR vulcanizates. Adv Mater Res 2013:138–144

    Article  Google Scholar 

  54. Aravind A, Joy ML, Nair KP (2015) Lubricant properties of biodegradable rubber tree seed (Hevea brasiliensis Muell. Arg) oil. Ind Crops Prod 74:14–19. https://doi.org/10.1016/j.indcrop.2015.04.014

    Article  CAS  Google Scholar 

  55. Abbasian A, Ezzoddin S, Iji H, Zavieh TK (2016) Vegetable oils: sustainable resources to replace high aromatic oil in rubber compounds. KGK, Kaut Gummi Kunstst 69:36–42

    CAS  Google Scholar 

  56. Raju P, Nandanan V, Sunil KNK (2007) A study on the use of coconut oil as plasticiser in natural rubber compounds. J Rubber Res 10:1–16

    CAS  Google Scholar 

  57. Mubofu EB (2016) Castor oil as a potential renewable resource for the production of functional materials. Sustain Chem Process 4:11. https://doi.org/10.1186/s40508-016-0055-8

    Article  CAS  Google Scholar 

  58. Naughton FC (2000) Castor oil. In: Kirk‐Othmer encyclopedia of chemical technology. https://doi.org/10.1002/0471238961.0301192014012107.a01

  59. Raju P, Nandanan V, Sunil KNK (2008) A study on the use of linseed oil as plasticiser in natural rubber compounds. J Rubber Res 11:147–162

    CAS  Google Scholar 

  60. Raju P, Nandanan V, Kutty SKN (2007) A study on the use of castor oil as plasticizer in natural rubber compounds. Prog Rubber Plast Recycl Technol 23:169–180. https://doi.org/10.1177/147776060702300302

    Article  CAS  Google Scholar 

  61. Indrajati IN, Dewi IR (2017) Performance of maleated castor oil based plasticizer on rubber: rheology and curing characteristic studies. IOP Conf Ser Mater Sci Eng 223:012001. https://doi.org/10.1088/1757-899X/223/1/012001

    Article  Google Scholar 

  62. Flanigan C, Beyer L, Klekamp D, Rohweder D, Stuck B, Terrill E (2011) Sustainable processing oils in low RR tread compounds. In: Rubber plast news. https://www.rubbernews.com/article/20100923/DATA01/309239947. Accessed 2 Nov 2022

  63. Abbas K, Ong SK (2019) Investigation of crude palm oil as an alternative processing oils in natural rubber: effect of the unsaturated fatty acid. IOP Conf Ser Mater Sci Eng 548:012009. https://doi.org/10.1088/1757-899X/548/1/012009

    Article  CAS  Google Scholar 

  64. Lee DJ, Song SH (2019) Investigation of epoxidized palm oils as green processing AIDS and activators in rubber composites. Int J Polym Sci 2019:1–7. https://doi.org/10.1155/2019/2152408

    Article  CAS  Google Scholar 

  65. Ash M, Bond JK, Capehart T, Childs NW, Hansen J, Liefert O, McConnell M, Meyer L, Hjort K (2019) A deeper look into the USDA crop baseline projections to 2028, with a focus on trade. https://www.ers.usda.gov/webdocs/outlooks/95295/fds-19k-02.pdf?v=391.6. Accessed 9 May 2022

  66. Meadows S, Young C, Abugri D, Hosur M, Jeelani S (2016) Studies on the synthesis and characterization of epoxidized soybean oil. In: Proc Am Soc Compos 31st Tech Conf ASC 2016

  67. Saremi K, Tabarsa T, Shakeri A, Babanalbandi A (2012) Epoxidation of soybean oil. Ann Biol Res 3:4254–4258

    CAS  Google Scholar 

  68. Giacomin V (2018) The emergence of an export cluster: traders and palm oil in early twentieth-century Southeast Asia. Enterp Soc 19:272–308. https://doi.org/10.1017/eso.2017.10

    Article  Google Scholar 

  69. Basiron Y, Weng CK (2004) The oil palm and its sustainability. J Oil Palm Res 16:1–10

    Google Scholar 

  70. Zakaria A, Ahangar HA, Sadrolhosseini AR, Mahdi MA, Zamiri R (2010) Fabrication of silver nanoparticles dispersed in palm oil using laser ablation. Int J Mol Sci 11:4767–4770. https://doi.org/10.3390/ijms11114764

    Article  CAS  Google Scholar 

  71. Derawi D, Salimon J, Ahmed WA (2014) Preparation of epoxidized palm olein as renewable material by using peroxy acids. Malays J Anal Sci 18:584–591

    Google Scholar 

  72. Ismail H, Anuar H (2000) Palm oil fatty acid as an activator in carbon black filled natural rubber compounds: dynamic properties, curing characteristics, reversion and fatigue studies. Polym Test 19:349–359

    Article  CAS  Google Scholar 

  73. Soh Kheang L, Yuen May C (2012) Influence of a lubricant auxiliary from palm oil methyl esters on the performance of palm olein-based fluid. J Oil Palm Res 24:1388–1396

    Google Scholar 

  74. Xu H, Fan T, Ye N, Wu W, Huang D, Wang D, Wang Z, Zhang L (2020) Plasticization effect of bio-based plasticizers from soybean oil for tire tread rubber. Polymers 12:1–10. https://doi.org/10.3390/polym12030623

    Article  CAS  Google Scholar 

  75. Hayichelaeh C, Boonkerd K (2022) Enhancement of the properties of carbon-black-filled natural rubber compounds containing soybean oil cured with peroxide through the addition of coagents. Ind Crops Prod 187:115306. https://doi.org/10.1016/j.indcrop.2022.115306

    Article  CAS  Google Scholar 

  76. Sahoo S, Basu D, Kumar A, Nawale M, Kadam S, Bhujbal A, Rajkumar K, Bhowmick A, Chattopadhyay S (2022) Bio-based oil derived from waste coconut shell: a potential additive for enhancing silanization in silica filled styrene butadiene copolymer. J Polym Res 29:1–20. https://doi.org/10.1007/S10965-022-03168-2

    Article  Google Scholar 

  77. Lovison VMH, de Freitas MA, de Camargo Forte MM (2021) Chemically modified soybean oils as plasticizers for silica-filled e-SBR/Br compounds for tire tread applications. J Elastomers Plast 53:806–824. https://doi.org/10.1177/0095244320988159

    Article  CAS  Google Scholar 

  78. Li J, Isayev AI (2018) Recent development in application of bio-based oils in elastomers. Rubber Chem Technol 91:719–728. https://doi.org/10.5254/rct.18.81534

    Article  CAS  Google Scholar 

  79. Richaud E, Derue I, Gilormini P, Verdu J, Vaulot C, Coquillat M, Desgardin N, Vandenbrouke A (2015) Plasticizer effect on network structure and hydrolytic degradation. Eur Polym J 69:232–246. https://doi.org/10.1016/j.eurpolymj.2015.05.031

    Article  CAS  Google Scholar 

  80. Mekonnen T, Mussone P, Khalil H, Bressler D (2013) Progress in bio-based plastics and plasticizing modifications. J Mater Chem A 1:13379–13398. https://doi.org/10.1039/c3ta12555f

    Article  CAS  Google Scholar 

  81. Flanigan C, Beyer L, Klekamp D, Rohweder D, Haakenson D (2013) Using bio-based plasticizers, alternative rubber. Rubber Plast News 11:15–19

    Google Scholar 

  82. Khalaf AI, Ward AA, Abd El-Kader AE, El-Sabbagh SH (2015) Effect of selected vegetable oils on the properties of acrylonitrile-butadiene rubber vulcanizates. Polymers 60:43–56. https://doi.org/10.14314/polimery.2015.043

    Article  Google Scholar 

  83. Sookyung U, Thitithammawong A, Nakason C, Pakhathirathien C, Thaijaroen W (2018) Effects of cashew nut shell liquid and its decarboxylated form on the properties of natural rubber. J Polym Environ 26:3451–3457. https://doi.org/10.1007/s10924-018-1227-2

    Article  CAS  Google Scholar 

  84. Bera A, Ganguly D, Ghorai SK, Rath JP, Ramakrishnan S, Kuriakose J, Amarnath SKP, Chattopadhyay S (2022) Treatment of natural rubber with bio-based components: a green endeavor to diminish the silica agglomeration for tyre tread application. Chem Eng J Adv 11:100349. https://doi.org/10.1016/j.ceja.2022.100349

    Article  CAS  Google Scholar 

  85. Khanra S, Kumar A, Ghorai SK, Ganguly D, Chattopadhyay S (2020) Influence of partial substitution of carbon black with silica on mechanical, thermal, and aging properties of super specialty elastomer based composites. Polym Compos 41:4379–4396. https://doi.org/10.1002/pc.25720

    Article  CAS  Google Scholar 

  86. Grunert F, Wehmeier A, Blume A (2020) New insights into the morphology of silica and carbon black based on their different dispersion behavior. Polymers 12:567. https://doi.org/10.3390/polym12030567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mohamad Aini NA, Othman N, Hussin MH, Sahakaro K, Hayeemasae N (2022) Effect of hybrid carbon black/lignin on rheological, mechanical and thermal stability properties of NR/BR composites. Plast Rubber Compos 51:293–305. https://doi.org/10.1080/14658011.2021.1981718

    Article  CAS  Google Scholar 

  88. Ismail H, Lotfi MNA, Othman N (2019) Effects of bentonite loading on curing characteristics, tensile, thermal and morphological properties of bentonite-filled acrylonitrile butadiene rubber composites. Mater Res Innov 23:288–293. https://doi.org/10.1080/14328917.2018.1457840

    Article  CAS  Google Scholar 

  89. Kundu PP (2000) Improvement of filler-rubber interaction by the coupling action of vegetable oil in carbon black reinforced rubber. J Appl Polym Sci 75:735. https://doi.org/10.1002/(sici)1097-4628(20000207)75:6%3c735::aid-app1%3e3.3.co;2-k

    Article  CAS  Google Scholar 

  90. Kukreja TR, Chauhan RC, Choe S, Kundu PP (2002) Effect of the doses and nature of vegetable oil on carbon black/rubber interactions: studies on castor oil and other vegetable oils. J Appl Polym Sci 87:1574–1578. https://doi.org/10.1002/app.11490

    Article  CAS  Google Scholar 

  91. Qin X, He Y, Khan S, Zhang B, Chen F, Dong D, Wang Z, Zhang L (2018) Controllable synthesis and characterization of soybean-oil-based hyperbranched polymers via one-pot method. ACS Sustain Chem Eng 6:12865–12871. https://doi.org/10.1021/acssuschemeng.8b02184

    Article  CAS  Google Scholar 

  92. Wang Z, Han Y, Huang Z, Zhang X, Zhang L, Lu Y, Tan T (2014) Plasticization effect of hydrogenated transgenic soybean oil on nitrile-butadiene rubber. J Appl Polym Sci 131:2–7. https://doi.org/10.1002/app.40643

    Article  CAS  Google Scholar 

  93. Wang Z, Han Y, Zhang X, Huang Z, Zhang L (2013) Plasticization effect of transgenic soybean oil. I) on ethylene propylene diene monomer (EPDM), as substitute for paraffin oil. J Appl Polym Sci 130:4457–4463. https://doi.org/10.1002/app.39589

    Article  CAS  Google Scholar 

  94. Azmi I, Ozir T, Rasib I, Nurherdiana S, Jalil MJ (2022) Synergistic epoxidation of palm oleic acid using a hybrid oxygen carrier solution. Biomass Convers Biorefin 6:1–8. https://doi.org/10.1007/s13399-022-03325-z

    Article  CAS  Google Scholar 

  95. Hayeemasae N, Waesateh K, Saiwari S, Ismail H, Othman N (2021) Detailed investigation of the reinforcing effect of halloysite nanotubes-filled epoxidized natural rubber. Polym Bull 78:7147–7166. https://doi.org/10.1007/s00289-020-03461-4

    Article  CAS  Google Scholar 

  96. Surya I, Waesateh K, Saiwari S, Ismail H, Othman N, Hayeemasae N (2021) Potency of urea-treated halloysite nanotubes for the simultaneous boosting of mechanical properties and crystallization of epoxidized natural rubber composites. Polymers 13:3068. https://doi.org/10.3390/polym13183068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nor NM, Salimon J (2019) Preparation of epoxidized palm oil by using performic acid. Malays J Chem 21:11–19

    Google Scholar 

  98. Harrison JS, Ounaies Z (2002) Introduction types of plasticizers. Encycl Polym Sci Technol 3:518

    Google Scholar 

  99. Zanchet A, Garcia PS, Nunes RCR, Crespo JS, Scuracchio CH (2016) Sustainable natural rubber compounds: naphthenic oil exchange for another alternative from renewable source. Int Ref J Eng Sci 5:10–19

    Google Scholar 

  100. Coran AY (1964) Vulcanization part V: the formation of crosslinks in the system: natural rubber-sulfur-MBT-zinc ion. Rubber Chem Technol 37:679–688. https://doi.org/10.5254/1.3540360

    Article  CAS  Google Scholar 

  101. Coran AY (1965) Vulcanization part VII: kinetics of sulfur vulcanization of natural rubber in presence of delayed-action accelerators. Rubber Chem Technol 38:1–14. https://doi.org/10.5254/1.3535628

    Article  CAS  Google Scholar 

  102. Gelling IR, Morrison NJ (1985) Sulfur vulcanization and oxidative aging of epoxidized natural rubber. Rubber Chem Technol 58:243–257. https://doi.org/10.5254/1.3536063

    Article  CAS  Google Scholar 

  103. Thitithammawong A, Nakason C, Hayichelaeh C (2015) Influence of oxirane ring and phenylenediamine structures in modified palm processing oils on properties of ENR/PP TPVs. Macromol Symp 354:21–27. https://doi.org/10.1002/masy.201400070

    Article  CAS  Google Scholar 

  104. Sahakaro K, Petchkaew A, Dierkes WK, Noordermeer WMJ (2016) Petroleum-based safe process oils: from solubility aspects to practical use in carbon black-reinforced rubber compounds. 6th Int Polym Conf Thailand, PCT 2016 PCT-8:19-19

  105. Nabil H, Ismail H (2014) Dynamic mechanical behavior of natural rubber/waste ethylene-propylene-diene rubber blends. KGK, Kaut Gummi Kunstst 67:33–39

    CAS  Google Scholar 

  106. Flanigan C, Beyer L, Klekamp D, Rohweder D, Stuck B, Terrill ER (2011) Comparative study of silica, carbon black and novel fillers in tread compounds. Rubber World 245:18–31

    Google Scholar 

  107. Radford DW, Fitzhorn PA, Senan A, Peterson ML (2002) Application of dynamic mechanical analysis to the evaluation of tire compounds. SAE Trans 111:2492–2496

    Google Scholar 

  108. Intharapat P, Kongnoo A, Maiwat P (2020) Bio-processing aids based on jatropha seed oil and its epoxidized derivatives in carbon black-reinforced natural rubber. J Vinyl Addit Technol 26:62–76. https://doi.org/10.1002/vnl.21716

    Article  CAS  Google Scholar 

  109. Hayichelaeh C, Reuvekamp LAEM, Dierkes WK, Blume A, Noordermeer JWM, Sahakaro K (2020) Silica-reinforced natural rubber tire tread compounds containing bio-based process oils: II) influence of epoxide and amino functional groups. Rubber Chem Technol 93:195–207. https://doi.org/10.5254/rct.19.81461

    Article  CAS  Google Scholar 

  110. Zafarmehrabian R, Gangali ST, Ghoreishy MHR, Davallu M (2012) The effects of silica/carbon black ratio on the dynamic properties of the tread compounds in truck tires. E-J Chem 9:1102–1112. https://doi.org/10.1155/2012/571957

    Article  CAS  Google Scholar 

  111. Sattayanurak S, Noordermeer JWM, Sahakaro K, Kaewsakul W, Dierkes WK, Blume A (2019) Silica-reinforced natural rubber: synergistic effects by addition of small amounts of secondary fillers to silica-reinforced natural rubber tire tread compounds. Adv Mater Sci Eng. https://doi.org/10.1155/2019/5891051

    Article  Google Scholar 

  112. Lee CK, Seo JG, Kim HJ, Song SH (2019) Novel green composites from styrene butadiene rubber and palm oil derivatives for high performance tires. J Appl Polym Sci 136:47672. https://doi.org/10.1002/app.47672

    Article  CAS  Google Scholar 

  113. Siriwong C, Khansawai P, Boonchiangma S, Sirisinha C, Sae-Oui P (2020) The influence of modified soybean oil as processing aids in tire application. Polym Bull 78:3589–3606. https://doi.org/10.1007/s00289-020-03296-z

    Article  CAS  Google Scholar 

  114. Eric Kunz (2022) Bio lubricants market size & share to surpass $2.3 Bn by 2028. In: Vantage Mark Res https://www.globenewswire.com/en/news-release/2022/11/02/2546740/0/en/Bio-Lubricants-Market-Size-Share-to-Surpass-2-3-Bn-by-2028-Vantage-Market-Research.html. Accessed 1 Mar 2023

  115. Ahmad Parveez GK, Kamil NN, Zawawi NZIN, Ong-Abdullah M, Rasuddin R, Loh SK, Selvaduray KR, Hoong SSOI, Idris Z (2022) Oil palm economic performance in Malaysia and R&D progress in 2021. J Oil Palm Res 34:185–218. https://doi.org/10.21894/jopr.2022.0036

    Article  CAS  Google Scholar 

  116. Roy K, Debnath SC, Potiyaraj P (2019) A critical review on the utilization of various reinforcement modifiers in filled rubber composites. J Elastomers Plast 52:167–193. https://doi.org/10.1177/0095244319835869

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the Malaysian Rubber Council (MRC) under the MRC Industry Linkage Fund (Ref. no.; ILF/17/006). We would like to thank Eversafe Rubber Works Sdn Bhd for their technical and financial support as well as for the use of their processing facilities. Last but not least, we would like to thank Universiti Sains Malaysia (Grant No. 304/PBahan/6050400/E123) for allowing us to use their facilities as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadras Othman.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, N.R., Othman, N., Shuib, R.K. et al. Perspective on opportunities of bio-based processing oil to rubber industry: a short review. Iran Polym J 32, 1455–1475 (2023). https://doi.org/10.1007/s13726-023-01203-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-023-01203-7

Keywords

Navigation