Skip to main content

Advertisement

Log in

Novel biopolymer-based hydrogels obtained through crosslinking of keratose proteins using tetrakis(hydroxymethyl) phosphonium chloride

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Merino wool obtained from the Karacabey region of Turkey was solubilized using peracetic acid oxidation. The wool and extracted wool proteins (keratose) were characterized using SEM, XRD, TGA, and FTIR analyses. SDS-PAGE result of the keratose indicated diffusive bands were populated between ~ 40 and ~ 55 kDa, corresponding to low-sulfur content α-keratose proteins. Chemically crosslinked hydrogels were prepared using the keratose and tetrakis(hydroxymethyl) phosphonium chloride (THPC). Storage moduli of the hydrogels prepared at 1:1, 1:2, and 1:4 keratose to THPC reactive group ratios were measured as 63 ± 22, 291 ± 21, and 804 ± 53 Pa, respectively. Crosslinking degrees of the hydrogels also affected the secondary structures of the keratose films obtained from the drying of the hydrogels. The hydrogel with the highest crosslinking density (1:4 gel) exhibited the lowest swelling ratio, whereas the one with the lowest crosslinking density (1:1 gel) disintegrated in deionized water within less than 6 h. CCK-8 tests using L929 mouse fibroblast cells showed that all the hydrogels promoted cell proliferation. These results suggest THPC crosslinked hydrogels prepared at the millimolar THPC concentrations are biocompatible scaffolds, which can be utilized in drug delivery and tissue engineering applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kadirvelu K, Fathima NN (2016) Self-assembly of keratin peptides: its implication on the performance of electrospun PVA nanofibers. Sci Rep 6:1–9

    Article  Google Scholar 

  2. Pakkaner E, Yalçın D, Uysal B, Top A (2019) Self-assembly behavior of the keratose proteins extracted from oxidized Ovis aries wool fibers. Int J Biol Macromol 125:1008–1015

    Article  CAS  PubMed  Google Scholar 

  3. Rouse JG, Van Dyke ME (2010) A review of keratin-based biomaterials for biomedical applications. Materials 3:999–1014

    Article  PubMed Central  Google Scholar 

  4. Rajabi M, Ali A, McConnell M, Cabral J (2020) Keratinous materials: structures and functions in biomedical applications. Mater Sci Eng C 110:110612

    Article  CAS  Google Scholar 

  5. Shavandi A, Silva TH, Bekhit AA, Bekhit AEDA (2017) Keratin: dissolution, extraction and biomedical application. Biomater Sci 5:1699–1735

    Article  CAS  PubMed  Google Scholar 

  6. Ramya KR, Thangam R, Madhan B (2020) Comparative analysis of the chemical treatments used in keratin extraction from red sheep’s hair and the cell viability evaluations of this keratin for tissue engineering applications. Process Biochem 90:223–232

    Article  CAS  Google Scholar 

  7. Potter NA, Van Dyke M (2018) Effects of differing purification methods on properties of keratose biomaterials. ACS Biomater Sci Eng 4:1316–1323

    Article  CAS  PubMed  Google Scholar 

  8. Aluigi A, Vineis C, Varesano A, Mazzuchetti G, Ferrero F, Tonin C (2008) Structure and properties of keratin/PEO blend nanofibres. Eur Polym J 44:2465–2475

    Article  CAS  Google Scholar 

  9. Fagbemi OD, Sithole B, Tesfaye T (2020) Optimization of keratin protein extraction from waste chicken feathers using hybrid pre-treatment techniques. Sustain Chem Pharm 17:100267

    Article  Google Scholar 

  10. Su C, Gong JS, Ye JP, He JM, Li RY, Jiang M, Geng Y, Zhang Y, Chen JH, Xu ZH (2020) Enzymatic extraction of bioactive and self-assembling wool keratin for biomedical applications. Macromol Biosci 20:2000073

    Article  CAS  Google Scholar 

  11. Ji Y, Chen J, Lv J, Li Z, Xing L, Ding S (2014) Extraction of keratin with ionic liquids from poultry feather. Sep Purif Technol 132:577–583

    Article  CAS  Google Scholar 

  12. Rodríguez-Clavel IS, Paredes-Carrera SP, Flores-Valle SO, Paz-García EJ, Sánchez-Ochoa JC, Pérez-Gutiérrez RM (2019) Effect of microwave or ultrasound irradiation in the extraction from feather keratin. J Chem 2019

  13. Zhang Y, Zhao W, Yang R (2015) Steam flash explosion assisted dissolution of keratin from feathers. ACS Sustain Chem Eng 3:2036–2042

    Article  CAS  Google Scholar 

  14. Pourjavaheri F, Pour SO, Jones OA, Smooker PM, Brkljača R, Sherkat F, Blanch EW, Gupta A, Shanks RA (2019) Extraction of keratin from waste chicken feathers using sodium sulfide and l-cysteine. Process Biochem 82:205–214

    Article  CAS  Google Scholar 

  15. Edwards A, Jarvis D, Hopkins T, Pixley S, Bhattarai N (2015) Poly(ε-caprolactone)/keratin-based composite nanofibers for biomedical applications. J Biomed Mater Res Part B Appl Biomater 103:21–30

    Article  CAS  Google Scholar 

  16. Tran CD, Mututuvari TM (2015) Cellulose, chitosan, and keratin composite materials:controlled drug release. Langmuir 31:1516–1526

    Article  CAS  PubMed  Google Scholar 

  17. Tachibana A, Nishikawa Y, Nishino M, Kaneko S, Tanabe T, Yamauchi K (2006) Modified keratin sponge: binding of bone morphogenetic protein-2 and osteoblast differentiation. J Biosci Bioeng 102:425–429

    Article  CAS  PubMed  Google Scholar 

  18. Wang S, Wang Z, Foo SEM, Tan NS, Yuan Y, Lin W, Zhang Z, Ng KW (2015) Culturing fibroblasts in 3D human hair keratin hydrogels. ACS Appl Mater 7:5187–5198

    Article  CAS  Google Scholar 

  19. Cohen DJ, Hyzy SL, Haque S, Olson LC, Boyan BD, Saul JM, Schwartz Z (2018) Effects of tunable keratin hydrogel erosion on recombinant human bone morphogenetic protein 2 release, bioactivity, and bone induction. Tissue Eng Part A 24:1616–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tomblyn S, Pettit Kneller EL, Walker SJ, Ellenburg MD, Kowalczewski CJ, Van Dyke M, Burnett L, Saul JM (2016) Keratin hydrogel carrier system for simultaneous delivery of exogenous growth factors and muscle progenitor cells. J Biomed Mater Res Part B Appl Biomater 104:864–879

    Article  CAS  Google Scholar 

  21. Saul JM, Ellenburg MD, de Guzman RC, Dyke MV (2011) Keratin hydrogels support the sustained release of bioactive ciprofloxacin. J Biomed Mater Res A 98:544–553

    Article  PubMed  CAS  Google Scholar 

  22. Veerasubramanian PK, Thangavel P, Kannan R, Chakraborty S, Ramachandran B, Suguna L, Muthuvijayan V (2018) An investigation of konjac glucomannan-keratin hydrogel scaffold loaded with Avena sativa extracts for diabetic wound healing. Colloids Surf B Biointerfaces 165:92–102

    Article  CAS  PubMed  Google Scholar 

  23. Park M, Shin HK, Kim BS, Kim MJ, Kim IS, Park BY, Kim HY (2015) Effect of discarded keratin-based biocomposite hydrogels on the wound healing process in vivo. Mater Sci Eng C 55:88–94

    Article  CAS  Google Scholar 

  24. Wang J, Hao S, Luo T, Cheng Z, Li W, Gao F, Guo T, Gong Y, Wang B (2017) Feather keratin hydrogel for wound repair: preparation, healing effect and biocompatibility evaluation. Colloids Surf B Biointerfaces 149:341–350

    Article  CAS  PubMed  Google Scholar 

  25. Pace LA, Plate JF, Smith TL, Van Dyke ME (2013) The effect of human hair keratin hydrogel on early cellular response to sciatic nerve injury in a rat model. Biomaterials 34:5907–5914

    Article  CAS  PubMed  Google Scholar 

  26. Sierpinski P, Garrett J, Ma J, Apel P, Klorig D, Smith T, Koman LA, Atala A, Van Dyke M (2008) The use of keratin biomaterials derived from human hair for the promotion of rapid regeneration of peripheral nerves. Biomaterials 29:118–128

    Article  CAS  PubMed  Google Scholar 

  27. Duncan WJ, Greer PF, Lee MH, Loch C, Gay JH (2018) Wool-derived keratin hydrogel enhances implant osseointegration in cancellous bone. J Biomed Mater Res Part B Appl Biomater 106:2447–2454

    Article  CAS  Google Scholar 

  28. Ledford BT, Simmons J, Chen M, Fan H, Barron C, Liu Z, Van Dyke M, He JQ (2017) Keratose hydrogels promote vascular smooth muscle differentiation from C-kit-positive human cardiac stem cells. Stem Cells Dev 26:888–900

    Article  CAS  PubMed  Google Scholar 

  29. Ham TR, Lee RT, Han S, Haque S, Vodovotz Y, Gu J, Burnett LR, Tomblyn S, Saul JM (2016) Tunable keratin hydrogels for controlled erosion and growth factor delivery. Biomacromol 17:225–236

    Article  CAS  Google Scholar 

  30. Cao Y, Yao Y, Li Y, Yang X, Cao Z, Yang G (2019) Tunable keratin hydrogel based on disulfide shuffling strategy for drug delivery and tissue engineering. J Colloid Interface Sci 544:121–129

    Article  CAS  PubMed  Google Scholar 

  31. Esparza Y, Ullah A, Wu J (2018) Molecular mechanism and characterization of self-assembly of feather keratin gelation. Int J Biol Macromol 107:290–296

    Article  CAS  PubMed  Google Scholar 

  32. Han S, Ham TR, Haque S, Sparks JL, Saul JM (2015) Alkylation of human hair keratin for tunable hydrogel erosion and drug delivery in tissue engineering applications. Acta Biomater 23:201–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nakata R, Osumi Y, Miyagawa S, Tachibana A, Tanabe T (2015) Preparation of keratin and chemically modified keratin hydrogels and their evaluation as cell substrate with drug releasing ability. J Biosci Bioeng 120:111–116

    Article  CAS  PubMed  Google Scholar 

  34. Yue K, Liu Y, Byambaa B, Singh V, Liu W, Li X, Sun Y, Zhang YS, Tamayol A, Zhang P (2018) Visible light crosslinkable human hair keratin hydrogels. Bioeng Transl Med 3:37–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sando L, Kim M, Colgrave ML, Ramshaw JA, Werkmeister JA, Elvin CM (2010) Photochemical crosslinking of soluble wool keratins produces a mechanically stable biomaterial that supports cell adhesion and proliferation. J Biomed Mater Res A 95:901–911

    Article  PubMed  CAS  Google Scholar 

  36. Chung C, Lampe KJ, Heilshorn SC (2012) Tetrakis (hydroxymethyl) phosphonium chloride as a covalent cross-linking agent for cell encapsulation within protein-based hydrogels. Biomacromol 13:3912–3916

    Article  CAS  Google Scholar 

  37. Snyder SL, Sobocinski PZ (1975) An improved 2, 4, 6-trinitrobenzenesulfonic acid method for the determination of amines. Anal Biochem 64:284–288

    Article  CAS  PubMed  Google Scholar 

  38. Sabzevar ZSM, Mehrshad M, Naimipour M (2021) A biological magnetic nano-hydrogel based on basil seed mucilage: study of swelling ratio and drug delivery. Iran Polym J 30:485–493

    Article  CAS  Google Scholar 

  39. Marshall RC, Gillespie J (1977) The keratin proteins of wool, horn and hoof from sheep. Aust J Biol Sci 30:389–400

    Article  CAS  Google Scholar 

  40. Gillespie J (1972) Proteins rich in glycine and tyrosine from keratins. Comp Biochem Physiol B Biochem Mol Biol 41:723–734

    Article  CAS  Google Scholar 

  41. Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin 39:549–559

    Article  CAS  PubMed  Google Scholar 

  42. Jackson M, Mantsch HH (1995) The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit Rev Biochem Mol Biol 30:95–120

    Article  CAS  PubMed  Google Scholar 

  43. HiIlterhaus-Bong S, Zahn H (1987) Contributions to the chemistry of human hair. 1. Analyses of cystine, cysteine and cystine oxides in untreated human hair. Int J Cosmet Sci 9:101–110

    Article  Google Scholar 

  44. Cardamone JM, Nuñ A, Garcia RA, Aldema-Ramos M (2009) Characterizing wool keratin. Adv Mater Sci Eng 2009:147175

    Google Scholar 

  45. Idris A, Vijayaraghavan R, Rana UA, Patti AF, Macfarlane DR (2014) Dissolution and regeneration of wool keratin in ionic liquids. Green Chem 16:2857–2864

    Article  CAS  Google Scholar 

  46. Nuutinen EM, Willberg-Keyriläinen P, Virtanen T, Mija A, Kuutti L, Lantto R, Jääskeläinen AS (2019) Green process to regenerate keratin from feathers with an aqueous deep eutectic solvent. RSC Adv 9:19720–19728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang K, Li R, Ma J, Jian Y, Che J (2016) Extracting keratin from wool by using l-cysteine. Green Chem 18:476–481

    Article  CAS  Google Scholar 

  48. Kakkar P, Madhan B, Shanmugam G (2014) Extraction and characterization of keratin from bovine hoof: a potential material for biomedical applications. Springerplus 3:596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Rama Rao D, Gupta V (1992) Thermal characteristics of wool fibers. J Macromol Sci B 31:149–162

    Article  Google Scholar 

  50. Zuidema JM, Rivet CJ, Gilbert RJ, Morrison FA (2014) A protocol for rheological characterization of hydrogels for tissue engineering strategies. J Biomed Mater Res Part B Appl Biomater 102:1063–1073

    Article  CAS  Google Scholar 

  51. Ozbas B, Kretsinger J, Rajagopal K, Schneider JP, Pochan DJ (2004) Salt-triggered peptide folding and consequent self-assembly into hydrogels with tunable modulus. Macromolecules 37:7331–7337

    Article  CAS  Google Scholar 

  52. Farmer RS, Argust LM, Sharp JD, Kiick KL (2006) Conformational properties of helical protein polymers with varying densities of chemically reactive groups. Macromolecules 39:162–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Farmer RS, Kiick KL (2005) Conformational behavior of chemically reactive alanine-rich repetitive protein polymers. Biomacromol 6:1531–1539

    Article  CAS  Google Scholar 

  54. Chen Y, Liu T, Wang G, Liu J, Zhao L, Yu Y (2020) Highly swelling, tough intelligent self-healing hydrogel with body temperature-response. Eur Polym J 140:110047

    Article  CAS  Google Scholar 

  55. McBath RA, Shipp DA (2010) Swelling and degradation of hydrogels synthesized with degradable poly (β-amino ester) crosslinkers. Polym Chem 1:860–865

    Article  CAS  Google Scholar 

  56. Suvarnapathaki S, Nguyen MA, Wu X, Nukavarapu SP, Camci-Unal G (2019) Synthesis and characterization of photocrosslinkable hydrogels from bovine skin gelatin. RSC Adv 9:13016–13025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the Sheep Breeding Research Institute (Balıkesir, Turkey) for kindly providing the wool samples. We acknowledge the Material Research Center and Biotechnology and Bioengineering Research and Application Center at İzmir Institute of Technology for XRD, SEM, UV-Vis spectroscopy, and SDS-PAGE experiments. Prof. Muhsin Çiftçioğlu and Dr. Özlem Duvarcı are also thanked for the oscillatory rheology experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayben Top.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yalçın, D., Top, A. Novel biopolymer-based hydrogels obtained through crosslinking of keratose proteins using tetrakis(hydroxymethyl) phosphonium chloride. Iran Polym J 31, 1057–1067 (2022). https://doi.org/10.1007/s13726-022-01058-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-022-01058-4

Keywords

Navigation