Skip to main content
Log in

Influence of ferric phosphate on smoke suppression properties and combustion behavior of intumescent flame retardant epoxy composites

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

This article mainly studies the smoke suppression properties and synergistic flame retardant effect of ferric phosphate (FeP) on flame retardant epoxy resin (EP) using ammonium polyphosphate and pentaerythritol as intumescent flame retardants (IFRs). Then, the smoke suppression and synergistic flame retardant properties of FeP on IFREP composites were evaluated using cone calorimeter test (CCT) and scanning electron microscopy (SEM). The influence of FeP on thermal degradation of IFREP was studied by thermogravimetric analysis/infrared spectrometry in nitrogen atmosphere. Remarkably, the CCT results show that FeP can effectively decrease heat release rate, total heat release, smoke production rate, total smoke production, and smoke factor of flame retardant samples. The SEM results show that FeP can greatly improve the structure of char residue. The TGA results indicate that the material with FeP undergoes degradation in three characteristic temperature stages, which can be attributed to the catalyzing deamination by FeP, the reaction between polyphosphoric acid and FeP, and the rupture of the polyphosphoric acid chain, respectively. The volatilized products formed on thermal degradation of IFREP indicate that the volatilized products are H2O, CO2, CO, carboxylic acid, and aliphatic hydrocarbons according to the temperature of onset formation. Here, FeP is considered to be an effective smoke suppression agent and a good synergism in IFREP composites, which can greatly improve the structure of char residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dong Y, Gui Z, Hu Y, Wu Y, Jiang S (2012) The influence of titanate nanotube on the improved thermal properties and the smoke suppression in poly (methyl methacrylate). J Hazard Mater 209–210:34–39

    Article  Google Scholar 

  2. Li L, Qian Y, Jiao CM (2012) Influence of red phosphorus on the flame-retardant properties of ethylene vinyl acetate/layered double hydroxides composites. Iran Polym J 21:557–568

    Article  CAS  Google Scholar 

  3. Jiang S, Gui Z, Shi Y, Zhou K, Yuan B, Bao C, Lo S, Hu Y (2014) Bismuth subcarbonate nanoplates for thermal stability, fire retardancy and smoke suppression applications in polymers: a new strategy. Polym Degrad Stab 107:1–9

    Article  CAS  Google Scholar 

  4. Beyer G (2001) Flame retardant properties of EVA-nanocomposites and improvements by combination of nanofillers with aluminiumtrihydrate. Fire Mater 25:193–197

    Article  CAS  Google Scholar 

  5. Zhou K, Wang B, Liu J, Jiang S, Shi Y, Zhang Q, Hu Y, Gui Z (2014) The influence of α-FeOOH/rGO hybrids on the improved thermal stability and smoke suppression properties in polystyrene. Mater Res Bull 53:272–279

    Article  CAS  Google Scholar 

  6. Bakhtiyari S, Taghi-Akbari L, Barikani M (2010) The effective parameters for reaction-to-fire properties of expanded polystyrene foams in bench scale. Iran Polym J 19:27–37

    CAS  Google Scholar 

  7. Li B, Wang J (1997) A cone calorimetric study of flame retardance and smoke emission of PVC. I. The effect of cuprous and molybdic oxides. J Fire Sci 15:341–357

    Article  CAS  Google Scholar 

  8. Zhou R, Zhang W, Zhao D (2013) Computational simulation of smoke temperature diffusion in high-rise buildings fires. Res J Appl Sci Eng Technol 5:2078–2083

    CAS  Google Scholar 

  9. Chen XL, Jiang YF, Jiao CM (2014) Smoke suppression properties of ferrite yellow on flame retardant thermoplastic polyurethane based on ammonium polyphosphate. J Hazard Mater 266:114–121

    Article  CAS  Google Scholar 

  10. Wang X, Xing W, Feng X, Yu B, Lu H, Song L, Hu Y (2014) The effect of metal oxide decorated graphene hybrids on the improved thermal stability and the reduced smoke toxicity in epoxy resins. Chem Eng J 250:214–221

    Article  CAS  Google Scholar 

  11. Wu K, Song L, Hu Y, Lu H, Kandola BK, Kandare E (2009) Synthesis and characterization of a functional polyhedral oligomericsilsesquioxane and its flame retardancy in epoxy resin. Prog Org Coat 65:490–497

    Article  CAS  Google Scholar 

  12. Jiao CM, Zhuo JL, Chen XL, Li SX, Wang H (2013) Flame retardant epoxy resin based on bisphenol A epoxy resin modified by phosphoric acid. J Therm Anal Calorim 114:253–259

    Article  CAS  Google Scholar 

  13. Zhang W, He X, Song T, Jiao Q, Yang R (2014) The influence of the phosphorus-based flame retardant on the flame retardancy of the epoxy resins. Polym Degrad Stab 109:209–217

    Article  CAS  Google Scholar 

  14. Bao C, Guo Y, Song L, Kan Y, Qian X, Hu Y (2011) Insitu preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. J Mater Chem 21:13290–13298

    Article  CAS  Google Scholar 

  15. Cheng XE, Shi W (2011) Synthesis and thermal properties of silicon-containing epoxy resin used for UV-curable flame-retardant coatings. J Therm Anal Calorim 103:303–310

    Article  CAS  Google Scholar 

  16. Wang CS, Shieh JY (1999) Phosphorus-containing epoxy resin for an electronic application. J Appl Polym Sci 73:353–361

    Article  CAS  Google Scholar 

  17. Mauerer O (2005) New reactive, halogen-free flame retardant system for epoxy resins. Polym Degrad Stab 88:70–73

    Article  CAS  Google Scholar 

  18. Gilman JW (1999) Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci 15:31–49

    Article  CAS  Google Scholar 

  19. Li B, Xu MJ (2006) Effect of a novel charring-foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene. Polym Degrad Stab 91:1380–1386

    Article  CAS  Google Scholar 

  20. Nie SB, Song L, Guo YQ, Wu K, Xing WY, Lu HD, Hu Y (2009) Intumescent flame retardation of starch containing polypropylene semi-biocomposites: flame retardancy and thermal degradation. Ind Eng Chem Res 48:10751–10758

    Article  CAS  Google Scholar 

  21. Borrás C, Romagnoli R, Lezna RO (2000) In-situ spectro electrochemistry (UV-visible and infrared) of anodic films on iron in neutral phosphate solutions. Electrochim Acta 45:1717–1725

    Article  Google Scholar 

  22. Mogus-Milankovic A, Day DE, Long GJ, Marasinghe GK (1996) Structural and magnetic properties of Fe2O3–P2O5–Na2O glasses. Part 1. Oxygen heat treatment. Phys Chem Glass 37:57–61

    CAS  Google Scholar 

  23. Prosini PP, Lisi M, Scaccia S (2002) Synthesis and characterization of amorphous hydrated FePO4 and its electrode performance in lithium batteries. J Electrochem Soc 149:297–301

    Article  Google Scholar 

  24. Song Y, Yang S, Zavalij PY, Whittingha MS (2002) Temperature-dependent properties of FePO4 cathode materials. Mater Res Bull 37:1249–1257

    Article  CAS  Google Scholar 

  25. Ai M, Ohdan K (2000) Oxidation by iron phosphate catalyst. J Mol Catal A Chem 159:19–24

    Article  CAS  Google Scholar 

  26. Song Y, Zavalij PY, Suzuki M, Whittingham MS (2002) New iron (III) phosphate phases: crystal structure and electrochemical and magnetic properties. Inorg Chem 41:5778–5786

    Article  CAS  Google Scholar 

  27. Zielinski RE, Grow DT (1992) An iron catalyst for CVD of methane on carbon fibers. Carbon 30:295–299

    Article  CAS  Google Scholar 

  28. Uemichi Y, Makino U, Kanazuka T (1992) Degradation of polypropylene to aromatic hydrocarbons over Pt-and Fe-containing activated carbon catalysts. J Anal Appl Pyrol 16:229–238

    Article  Google Scholar 

  29. Weil ED, Patel NG (2003) Iron compounds in non-halogen flame-retardant polyamide systems. Polym Degrad Stab 82:291–296

    Article  CAS  Google Scholar 

  30. Carty P, Docherty A (1988) Iron-containing compounds as flame retarding/smoke-suppressing additives for PVC. Fire Mater 12:109–113

    Article  CAS  Google Scholar 

  31. Nie S, Song L, Bao C, Qian X, Guo Y, Hong N, Hu Y (2011) Synergistic effects of ferric pyrophosphate (FePP) in intumescent flame-retardant polypropylene. Polym Adv Technol 22:870–876

    Article  CAS  Google Scholar 

  32. Wang B, Zhou K, Hu S, Wang L, Hu Y, Song L (2012) Enhancement on physical properties of flame retarded ethylene-vinyl acetate copolymer/ferric pyrophosphate composites through electron beam irradiation. Compos Part B Eng 43:641–646

    Article  CAS  Google Scholar 

  33. Morgan AB (2006) Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems. Polym Adv Technol 17:206–217

    Article  CAS  Google Scholar 

  34. Bourbigot S, Bras ML, Duquesne S, Rochery M (2004) Recent advances for intumescent polymers. Macromol Mater Eng 289:499–511

    Article  CAS  Google Scholar 

  35. Zhang P, Hu Y, Song L, Lu H, Wang J, Liu Q (2009) Synergistic effect of iron and intumescent flame retardant on shape-stabilized phase change material. Thermochim Acta 487:74–79

    Article  CAS  Google Scholar 

  36. Zhao W, Liu JP (2013) Synergistic effect of nano Fe2O3 on intumescent flame retardant polypropylene systems. Adv Mater Res 669:233–238

    Article  Google Scholar 

  37. Cai Y, Li Q, Wei Q, Wu Y, Song L, Hu Y (2008) Structures, thermal stability, and crystalline properties of polyamide6/organic-modified Fe-montmorillonite composite nanofibers by electrospinning. J Mater Sci 43:6132–6138

    Article  CAS  Google Scholar 

  38. Ullah S, Ahmad F, Megat-Yusoff PSM (2011) Intumescent fire retardant coating. J Appl Sci 11:3645–3649

    Article  CAS  Google Scholar 

  39. Chiang CL, Ma CCM (2002) Synthesis, characterization and thermal properties of novel epoxy containing silicon and phosphorus nanocomposites by sol–gel method. Eur Polym J 38:2219–2224

    Article  CAS  Google Scholar 

  40. Gallo E, Schartel B, Braun U, Russo P, Acierno D (2011) Fire retardant synergisms between nanometric Fe2O3 and aluminum phosphinate in poly (butylene terephthalate). Polym Adv Technol 22:2382–2391

    Article  CAS  Google Scholar 

  41. Dong Y, Gui Z, Hu Y, Wu Y, Jiang S (2012) The influence of titanate nanotube on the improved thermal properties and the smoke suppression in poly (methyl methacrylate). J Hazard Mater 209:34–39

    Article  Google Scholar 

  42. Zilberman J, Hull TR, Price D, Milnes GJ, Keen F (2000) Flame retardancy of some ethylene–vinyl acetate copolymer-based formulations. Fire Mater 24:159–164

    Article  CAS  Google Scholar 

  43. Ricciardi MR, Antonucci V, Zarrelli M, Giordano M (2012) Fire behavior and smoke emission of phosphate-based inorganic fire-retarded polyester resin. Fire Mater 36:203–215

    Article  CAS  Google Scholar 

  44. Fang S, Hu Y, Song L, Zhan J, He Q (2008) Mechanical properties, fire performance and thermal stability of magnesium hydroxide sulfate hydrate whiskers flame retardant silicone rubber. J Mater Sci 43:1057–1062

    Article  CAS  Google Scholar 

  45. Jiao C, Chen X, Zhang J (2009) Synergistic effects of Fe2O3 with layered double hydroxides in EVA/LDH composites. J Fire Sci 27:465–479

    Article  CAS  Google Scholar 

  46. Chiang CL, Chang RC, Chiu YC (2007) Thermal stability and degradation kinetics of novel organic/inorganic epoxy hybrid containing nitrogen/silicon/phosphorus by sol–gel method. Thermochim Acta 453:97–104

    Article  CAS  Google Scholar 

  47. Chen XL, Jiao CM (2008) Thermal degradation characteristics of a novel flame retardant coating using TG–IR technique. Polym Degrad Stab 93:2222–2225

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Natural Science Foundation of China (Nos. 51106078 and 51206084), the Outstanding Young Scientist Research Award Fund from Shandong Province (BS2011CL018), and the University Research and Development Projects, Shandong Province (J14LA13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xilei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Chen, X. & Jiao, C. Influence of ferric phosphate on smoke suppression properties and combustion behavior of intumescent flame retardant epoxy composites. Iran Polym J 24, 337–347 (2015). https://doi.org/10.1007/s13726-015-0327-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-015-0327-2

Keywords

Navigation