Skip to main content

Advertisement

Log in

Tools for Nutrition Assessment of Adults with Cerebral Palsy: Development of a Gold Standard

  • REVIEW
  • Published:
Current Nutrition Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cerebral palsy (CP) is a group of disorders caused by non-stabilized cerebral lesions. Individuals with this disorder are at a higher risk of suffering from malnutrition and other related detrimental effects to their quality of life. For this reason, accurate methods of nutritional assessment are vital for people suffering from this condition. While assessment of nutritional status in children with CP has been extensively studied, very few studies have been carried out on adults. These limitations are due to the great anatomical-functional variability characteristic of this syndrome. Difficulties that derive from this variability in adult patients with CP mean that there remains an urgent need for certain standards of nutritional assessment for this population. The objective of this review is to compile the latest trends in nutritional assessment in adults with CP to guide the development of a conceptual framework for future research.

Recent Findings

With this aim, relevant studies have been identified. The most commonly used technique to evaluate nutritional status is the BMI because of its ease-of-use. However, its well-known limitations fail to adequately estimate the nutritional status in this population, with measurements of patients with CP yielding results that are much less accurate than those that already exist in the general population.

Summary

Although more studies are needed, kinanthropometry is considered one of the most reliable techniques; nevertheless, the anatomical limitation characteristic of CP plays a limiting factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •  Of importance •• Of major importance

  1. Argüelles Póo P. Parálisis cerebral infantil. Protoc Diagnóstico Ter AEP. Neurología Pediátrica. 2008;271–7.

  2. Bax M, Goldstein M, Rosenbaum P, Leviton A, Paneth N, Dan B, et al. Proposed definition and classification of cerebral palsy, April 2005. Dev Med Child Neurol. 2005;47:571–6.

    Article  PubMed  Google Scholar 

  3. Claßen M, Schmidt-Choudhury A. Feeding problems and malnutrition in children and adolescents with severe neurological impairments. Monatsschr Kinderheilkd. 2019;167:675–85.

    Article  Google Scholar 

  4. Graham D, Paget S, Wimalasundera N. Current thinking in the health care management of children with cerebral palsy. Med J Aust. 2019;210:129–35.

    Article  PubMed  Google Scholar 

  5. Gulati S, Sondhi V. Cerebral palsy: An overview. Indian J Pediatr. 2018;85:1006–16.

    Article  PubMed  Google Scholar 

  6. Levitt S, Torres Lacomba M. Tratamiento de la parálisis cerebral y del retraso motor. 3a ed. Madrid, España: Médica Panamericana. 2000.

  7. Murphy KP. The adult with cerebral palsy. Orthop Clin North Am. 2010;41:595–605.

    Article  PubMed  Google Scholar 

  8. Robaina-Castellanos GR, Riesgo-Rodriguez S. Robaina-Castellanos MS [Definition and classification of cerebral palsy: A problem that has already been solved?]. Rev Neurol. 2007;45:110–7.

    CAS  PubMed  Google Scholar 

  9. Santos MTB, Guaré RO, Leite MF, Ferreira MCD, Durão MS, Jardim JR. Salivary osmolality in individuals with cerebral palsy. Arch Oral Biol. 2010;55:855–60.

    Article  PubMed  Google Scholar 

  10. van Gorp M, Hilberink SR, Noten S, Benner JL, Stam HJ, van der Slot WMA, et al. Epidemiology of cerebral palsy in adulthood: A systematic review and meta-analysis of the most frequently studied outcomes. Arch Phys Med Rehabil. 2020;101:1041–52.

    Article  PubMed  Google Scholar 

  11. Cans C. Surveillance of cerebral palsy in Europe: A collaboration of cerebral palsy surveys and registers. Dev Med Child Neurol. 2007;42:816–24.

    Article  Google Scholar 

  12. Clark SL, Hankins GDV. Temporal and demographic trends in cerebral palsy–Fact and fiction. Am J Obstet Gynecol. 2003;188:628–33.

    Article  PubMed  Google Scholar 

  13. Erick M. Nutrición durante el embarazo y la lactancia. Krause Dietoter. 2012;340–74.

  14. Reyes Contreras G, Parodi Carvajal A, Ibarra DB. Factores de riesgo en niños con parálisis cerebral infantil en el Centro de Rehabilitación Infantil Teletón. Estado de México Rehabilitación. 2006;40:14–9.

    Article  Google Scholar 

  15. Scarpato E, Staiano A, Molteni M, Terrone G, Mazzocchi A, Agostoni C. Nutritional assessment and intervention in children with cerebral palsy: A practical approach. Int J FOOD Sci Nutr. 2017;68:763–70.

    Article  PubMed  Google Scholar 

  16. Winter S, Autry A, Boyle C, Yeargin-Allsopp M. Trends in the prevalence of cerebral palsy in a population-based study. Pediatrics. 2002;110:1220–5.

    Article  PubMed  Google Scholar 

  17. Nelson KB, Willoughby RE. Infection, inflammation and the risk of cerebral palsy. Curr Opin Neurol. 2000;13:133–9.

    Article  CAS  PubMed  Google Scholar 

  18. Arneson CL, Durkin MS, Benedict RE, Kirby RS, Yeargin-Allsopp M, Van Naarden BK, et al. Prevalence of cerebral palsy: Autism and developmental disabilities monitoring network, three sites, United States, 2004†. Disabil Health J. 2009;2:45–8.

    Article  PubMed  Google Scholar 

  19. Stavsky M, Mor O, Mastrolia SA, Greenbaum S, Than NG, Erez O. Cerebral palsy-Trends in epidemiology and recent development in prenatal mechanisms of disease, treatment, and prevention. Front Pediatr. 2017;5:21.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Galea C, Mcintyre S, Smithers-Sheedy H, Reid SM, Gibson C, Delacy M, et al. Cerebral palsy trends in Australia (1995–2009): A population-based observational study. Dev Med Child Neurol. 2019;61:186–93.

    Article  PubMed  Google Scholar 

  21. Kleinsteuber Sáa K, Avaria Benaprés M de los Á, Varela Estrada X. Parálisis cerebral. Rev Pediatr Electrón. 2014;54–70.

  22. Oskoui M, Coutinho F, Dykeman J, Jetté N, Pringsheim T. An update on the prevalence of cerebral palsy: A systematic review and meta-analysis. Dev Med Child Neurol. 2013;55:509–19.

    Article  PubMed  Google Scholar 

  23. Horber V, Fares A, Platt MJ, Arnaud C, Krägeloh-Mann I, Sellier E. Severity of cerebral palsy-The impact of associated impairments. Neuropediatrics. 2020;51:120–8.

    Article  PubMed  Google Scholar 

  24. Sellier E, Surman G, Himmelmann K, Andersen G, Colver A, Krägeloh-Mann I, et al. Trends in prevalence of cerebral palsy in children born with a birthweight of 2,500 g or over in Europe from 1980 to 1998. Eur J Epidemiol Netherlands. 2010;25:635–42.

    Article  Google Scholar 

  25. Arnaud C, Ehlinger V, Delobel-Ayoub M, Klapouszczak D, Perra O, Hensey O, et al. Trends in prevalence and severity of pre/perinatal cerebral palsy among children born preterm from 2004 to 2010: A SCPE collaboration study. Front Neurol. 2021;12: 624884.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kim W, Lee SJ, Yoon Y-K, Shin Y-K, Cho S-R, Rhee Y. Adults with spastic cerebral palsy have lower bone mass than those with dyskinetic cerebral palsy. Bone. 2015;71:89–93.

    Article  PubMed  Google Scholar 

  27. Hagberg B, Hagberg G, Olow I, von Wendt L. The changing panorama of cerebral palsy in Sweden. VII. Prevalence and origin in the birth year period 1987–90. Acta Paediatr Oslo Nor 1992. 1996;85:954–60.

  28. Serdaroğlu A, Cansu A, Ozkan S, Tezcan S. Prevalence of cerebral palsy in Turkish children between the ages of 2 and 16 years. Dev Med Child Neurol. 2006;48:413–6.

    Article  PubMed  Google Scholar 

  29. Colver A, Fairhurst C, Pharoah P. Cerebral palsy LANCET. 2014;383:1240–9.

    PubMed  Google Scholar 

  30. Girona Chenoll G, Aguilera Olmos R, Tosca R, Bea Muñoz M, Cuello VE. Factores de riesgo y etiología de la parálisis cerebral en nuestro medio. Rehabilitación. 2001;35:146–53.

    Article  Google Scholar 

  31. Carter DR, Tse B. The pathogenesis of osteoarthritis in cerebral palsy. Dev Med Child Neurol. 2009;51:79–83.

    Article  PubMed  Google Scholar 

  32. Fortuna R, Holub A, Turk M, Meccarello J, Davidson P. Health conditions, functional status and health care utilization in adults with cerebral palsy. Fam Pract. 2018;35:661–70.

    Article  PubMed  Google Scholar 

  33. Heyn P, Tagawa A, Pan Z, Thomas S, Carollo J. Prevalence of metabolic syndrome and cardiovascular disease risk factors in adults with cerebral palsy. Dev Med CHILD Neurol. 2019;61:477–83.

    Article  PubMed  Google Scholar 

  34. McPhee PG. Cardiovascular disease in cerebral palsy: Shifting our focus from attention to prevention. Dev Med Child Neurol. 2019;61:390–1.

    Article  PubMed  Google Scholar 

  35. Peterson MD, Ryan JM, Hurvitz EA, Mahmoudi E. Chronic conditions in adults with cerebral palsy. JAMA. 2015;314:2303.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Peterson MD, Gordon PM, Hurvitz EA. Chronic disease risk among adults with cerebral palsy: The role of premature sarcopoenia, obesity and sedentary behaviour: Chronic disease risk in cerebral palsy. Obes Rev. 2013;14:171–82.

    Article  CAS  PubMed  Google Scholar 

  37. Batra A, Beattie R. Recognising malnutrition in children with neurodisability. Clin Nutr. 2020;39:327–30.

    Article  CAS  PubMed  Google Scholar 

  38. Tsai AC, Hsu H-Y, Chang T-L. The Mini Nutritional Assessment (MNA) is useful for assessing the risk of malnutrition in adults with intellectual disabilities. J Clin Nurs. 2011;20:3295–303.

    Article  PubMed  Google Scholar 

  39. Rapp CE. The adult with cerebral palsy. Arch Fam Med. 2000;9:466–72.

    Article  PubMed  Google Scholar 

  40. Benigni I, Devos P, Rofidal T, Seguy D. The CP-MST, a malnutrition screening tool for institutionalized adult cerebral palsy patients. Clin Nutr. 2011;30:769–73.

    Article  PubMed  Google Scholar 

  41. Yi Y, Jung S, Bang M. Emerging issues in cerebral palsy associated with aging: A physiatrist perspective. Ann Rehabil Med-ARM. 2019;43:241–9.

    Article  Google Scholar 

  42. Blair E, Langdon K, McIntyre S, Lawrence D, Watson L. Survival and mortality in cerebral palsy: Observations to the sixth decade from a data linkage study of a total population register and National Death Index. BMC Neurol. 2019;19:111.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Araujo L, Silva L. Anthropometric assessment of patients with cerebral palsy: Which curves are more appropriate? J Pediatr (Rio J). 2013;89:307–14.

    Article  PubMed  Google Scholar 

  44. • Harris C, Wright S. Malnutrition in hospitalized adults with cerebral palsy. J Parenter Enter Nutr. 2021;45:1749–54. This study shows that malnutrition is linked to worse outcomes for hospitalized adults with cerebral palsy. It suggests that early screening and nutrition interventions may help these patients survive and use less hospital resources.

  45. Ferrang TM, Johnson RK, Ferrara MS. Dietary and anthropometric assessment of adults with cerebral palsy. J Am Diet Assoc. 1992;92:1083–6.

    Article  CAS  PubMed  Google Scholar 

  46. Henderson RC, Grossberg RI, Matuszewski J, Menon N, Johnson J, Kecskemethy HH, et al. Growth and nutritional status in residential center versus home-living children and adolescents with quadriplegic cerebral palsy. J Pediatr. 2007;151:161–6.

    Article  PubMed  Google Scholar 

  47. Tomoum HY, Badawy NB, Hassan NE, Alian KM. Anthropometry and body composition analysis in children with cerebral palsy. Clin Nutr. 2010;29:477–81.

    Article  PubMed  Google Scholar 

  48. Amezquita M, Hodgson M. Alternatives to estimate stature during nutritional assessment of children with cerebral palsy. Rev Chil Pediatr-CHILE. 2014;85:22–30.

    Google Scholar 

  49. Stevenson R. Weight and alternative measures for nutrition assessment in children with cerebral palsy. Dev Med CHILD Neurol. 2021;63:768–768.

    Article  PubMed  Google Scholar 

  50. Ryan JM, Crowley VE, Hensey O, Broderick JM, McGahey A, Gormley J. Habitual physical activity and cardiometabolic risk factors in adults with cerebral palsy. Res Dev Disabil. 2014;35:1995–2002.

    Article  PubMed  Google Scholar 

  51. Rieken R, Calis EAC, Tibboel D, Evenhuis HM, Penning C. Validation of skinfold measurements and bioelectrical impedance analysis in children with severe cerebral palsy: A review. Clin Nutr. 2010;29:217–21.

    Article  PubMed  Google Scholar 

  52. Wittenbrook W. Nutritional assessment and intervention in cerebral palsy. Pract Gastroenterol. 2011;35:16–32.

    Google Scholar 

  53. Norte A, Alonso C, Martinez-Sanz J, Gutierrez-Hervas A, Sospedra I. Nutritional status and cardiometabolic risk factors in institutionalized adults with cerebral palsy. Med-Lith. 2019;55.

  54. de la Torre-Olivares R, Moreno-Lorenzo C, Pérez-Mármol JM, Cabrera-Martos I, Villaverde-Gutierrez C, Sánchez AMC, et al. Evaluation of functional status associated with overweight in adults with cerebral palsy. Rehabil Nurs Off J Assoc Rehabil Nurses. 2018;43:88–94.

    Google Scholar 

  55. Le Roy O. C, Rebollo G. MJ, Moraga M. F, Díaz Sm. X, Castillo-Durán C. Nutrition of children with selected neurological illnesses. An update. Rev Chil Pediatr. 2010;81:103–13.

  56. Garcia A, Alvarez J, Calvo M. Requerimientos nutricionales en situaciones patólogicas. Tratado Nutr Nutr Treatise Nutr Clin Clin Nutr. Medica Panamericana; 2017;75–93.

  57. Riley A, Vadeboncoeur C. Nutritional differences in neurologically impaired children. Paediatr CHILD Health. 2012;17:E98-101.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rieken R, Van Goudoever JB, Schierbeek H, Willemsen SP, Calis EAC, Tibboel D, et al. Measuring body composition and energy expenditure in children with severe neurologic impairment and intellectual disability. Am J Clin Nutr. 2011;94:759–66.

    Article  CAS  PubMed  Google Scholar 

  59. Aydin K, Turkish Cerebral Palsy Study Grp. A multicenter cross-sectional study to evaluate the clinical characteristics and nutritional status of children with cerebral palsy. Clin Nutr ESPEN. 2018;26:27–34.

  60. Plow MA, Moore S, Husni ME, Kirwan JP. A systematic review of behavioural techniques used in nutrition and weight loss interventions among adults with mobility-impairing neurological and musculoskeletal conditions. Obes Rev. 2014;15:945–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Senadim S, Cabalar M, Gedik H, Kasim A, Bulut A, Yayla V, et al. A cross-sectional evaluation of home health service in patients with chronic neurologic diseases in a province of Turkey. ACTA Neurol Belg. 2016;116:65–72.

    Article  PubMed  Google Scholar 

  62. Kwon J-Y, Chang HJ, Lee JY, Ha Y, Lee PK, Kim Y-H. Effects of hippotherapy on gait parameters in children with bilateral spastic cerebral palsy. Arch Phys Med Rehabil United States. 2011;92:774–9.

    Article  Google Scholar 

  63. Kwon DG, Kang SC, Chung CY, Lee SH, Lee KM, Choi IH, et al. Prevalence of obesity in ambulatory patients with cerebral palsy in the Korean population: A single institution’s experience. Clin Orthop Surg. 2011;3:211–6.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Peterson M, Gordon P, Hurvitz E, Burant C. Secondary muscle pathology and metabolic dysregulation in adults with cerebral palsy. Am J Physiol-Endocrinol Metab. 2012;303:E1085–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cremer N, Hurvitz EA, Peterson MD. Multimorbidity in middle-aged adults with cerebral palsy. Am J Med. 2017;130:744.e9-744.e15.

    Article  PubMed  Google Scholar 

  66. Ryan JM, Crowley VE, Hensey O, McGahey A, Gormley J. Waist circumference provides an indication of numerous cardiometabolic risk factors in adults with cerebral palsy. Arch Phys Med Rehabil. 2014;95:1540–6.

    Article  PubMed  Google Scholar 

  67. Oeffinger D, Gurka M, Kuperminc M, Hassani S, Buhr N, Tylkowski C. Accuracy of skinfold and bioelectrical impedance assessments of body fat percentage in ambulatory individuals with cerebral palsy. Dev Med CHILD Neurol. 2014;56:475–81.

    Article  PubMed  Google Scholar 

  68. Stevenson RD. Body mass index and obesity in children with cerebral palsy. Dev Med Child Neurol. 2018;60:639.

    Article  PubMed  Google Scholar 

  69. Waninge A, Ligthart K a. M, Kramer J, Hoeve S, van der Schans CP, Haisma HH. Measuring waist circumference in disabled adults. Res Dev Disabil. 2010;31:839–47.

  70. Bordallo A. Obesity specialization course: Module 1. Ed Instituto de ciencias de nutrición y salud (ICNS); 2017.

  71. •• Yano N, Iwashita D, Ohwatashi A. The utility of bioelectrical impedance analysis to assess nutritional status of patients with severe motor and intellectual disabilities. Clin Nutr ESPEN [Internet]. 2022; Available from: https://www.sciencedirect.com/science/article/pii/S2405457722002832. This article focuses on the analysis of bioelectrical impedance as a useful method for nutritional assessment in patients with severe motor and intellectual disabilities given the limitations of the commonly used nutritional assessment methods as well as kinanthropometry.

  72. Kivlehan E, Gaebler-Spira D, Chen L, Garrett A, Wysocki N, Marciniak C. Relationship of anthropometric measurements and percent body fat mass to cardiovascular disease risk factors in adults with cerebral palsy. PM&R. 2023;15:192–202.

    Article  Google Scholar 

  73. Okorodudu DO, Jumean MF, Montori VM, Romero-Corral A, Somers VK, Erwin PJ, et al. Diagnostic performance of body mass index to identify obesity as defined by body adiposity: A systematic review and meta-analysis. Int J Obes. 2005;2010(34):791–9.

    Google Scholar 

  74. Herrero de Lucas A, Cabañas Armesilla M. La cineantropometria como índice de salud y de patologia. Compend Cineantropometria. CTO Editorial. 2009;351–68.

  75. Jensen MD. Role of body fat distribution and the metabolic complications of obesity. J Clin Endocrinol Metab. 2008;93:s57-63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Johnson DL, Miller F, Subramanian P, Modlesky CM. Adipose tissue infiltration of skeletal muscle in children with cerebral palsy. J Pediatr. 2009;154:715–20.

    Article  PubMed  Google Scholar 

  77. Peterson M, Haapala H, Chaddha A, Hurvitz E. Abdominal obesity is an independent predictor of serum 25-hydroxyvitamin D deficiency in adults with cerebral palsy. Nutr Metab. 2014;11.

  78. van den Berg-Emons RJ, van Baak MA, Westerterp KR. Are skinfold measurements suitable to compare body fat between children with spastic cerebral palsy and healthy controls? Dev Med Child Neurol. 1998;40:335–9.

    PubMed  Google Scholar 

  79. Laskey MA. Dual-energy X-ray absorptiometry and body composition. Nutrition. 1996;12:45–51.

    Article  CAS  PubMed  Google Scholar 

  80. •• De Macedo OG, Carazzato JG, Meirelles EDS, De Paula A, Dos Santos CA, Bolliger Neto R, et al. Comparative study of skin folding of dominant and nondominant hemibodies in spastic hemiplegic cerebral palsy. Clinics. 2008;63:601–6. This article provides statistical evidence that when the anatomical part is affected, this may introduce bias in the measurement, potentially requiring to adapt the protocols or develop corrective formulas, to obtain a global and reliable assessment of the nutritional status.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Cereda E. Mini Nutritional Assessment. Curr Opin Clin Nutr Metab Care. 2012;15:29–41.

    Article  Google Scholar 

  82. Ravasco P, Anderson H, Mardones F. Métodos de valoración del estado nutricional. Nutr Hosp. 2010;25:57–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: David Exposito and Carla Soler; methodology: David Exposito; writing—original draft: David Exposito; writing—review and editing: David Expósito and Carla Soler; supervision: Carla Soler, María Morales, and Jose Miguel Soriano; project administration: Carla Soler.

Corresponding author

Correspondence to D. Expósito.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Expósito, D., Morales-Suarez, M.M., Soriano, J.M. et al. Tools for Nutrition Assessment of Adults with Cerebral Palsy: Development of a Gold Standard. Curr Nutr Rep 12, 545–553 (2023). https://doi.org/10.1007/s13668-023-00485-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13668-023-00485-w

Keywords

Navigation