Skip to main content

Advertisement

Log in

Mechanical and Biocorrosion Properties of Ti-XSn (X = 0, 5, 10, 15 wt.%) Alloys for Biomedical Application Fabricated by Powder Metallurgy

  • Original Research Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

The Ti-XSn (X = 5, 10, 15) (wt.%) alloys are fabricated by mixing TiH2/Sn powders, then compacting and extruding. The microstructure, mechanical properties, and biocorrosion resistivity of the Ti-XSn rods are studied and compared with the CP Ti fabricated with the same condition by the powder compact extrusion of TiH2. The Ti-XSn alloys exhibit significantly high tensile strength, hardness, and low elongation with increasing Sn content. The strength of the Ti-XSn alloys is increased from 648 to 801 MPa, and the elongation is reduced from 11.4 to 5.3%, with the Sn content increasing from 5 to 15 wt.%. The biocorrosion resistance of the Ti-XSn alloys is higher than the CP Ti. With increasing Sn content, the polarization resistance of the Ti-XSn alloys increases due to the reduced availability of corrosive ions on the surface. The Ti-XSn alloys generally revealed excellent biocorrosion resistivity and tensile strength compared to the CP Ti.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.R.V. Nunes, S. Borborema, L.S. Araújo, J. Dille, L. Malet, L.H. de Almeida, Production, microstructure and mechanical properties of cold-rolled Ti-Nb-Mo-Zr alloys for orthopedic applications. J. Alloys Compd. 743, 141–145 (2018). https://doi.org/10.1016/j.jallcom.2018.01.305

    Article  CAS  Google Scholar 

  2. M. Najafizadeh, M. Bozorg, A. Bahadoran, J. Liang, D. Zhang, Compressive and biocorrosion properties of Ti-XAl-2Fe-3Cu alloys fabricated by powder metallurgy. J. Alloys Compd. 884, 161079 (2021). https://doi.org/10.1016/j.jallcom.2021.161079

    Article  CAS  Google Scholar 

  3. U. Vandana, D. Nancy, A. Sabareeswaran, N.S. Remya, N. Rajendran, P.V. Mohanan, Biocompatibility of strontium incorporated ceramic coated titanium oxide implant indented for orthopaedic applications. Mater. Sci. Eng. B. 264, 114954 (2021). https://doi.org/10.1016/j.mseb.2020.114954

    Article  CAS  Google Scholar 

  4. I. Mitra, S. Bose, W.S. Dernell, N. Dasgupta, C. Eckstrand, J. Herrick, M.J. Yaszemski, S.B. Goodman, A. Bandyopadhyay, 3D Printing in alloy design to improve biocompatibility in metallic implants. Mater. Today. 40, 20–34 (2021). https://doi.org/10.1016/j.mattod.2020.11.021

    Article  CAS  Google Scholar 

  5. Q. Nawaz, S. Fastner, M.A.U. Rehman, S. Ferraris, S. Perero, G.G. di Confiengo, E. Yavuz, M. Ferraris, A.R. Boccaccini, Multifunctional stratified composite coatings by electrophoretic deposition and RF co-sputtering for orthopaedic implants. J. Mater. Sci. 56, 7920–7935 (2021). https://doi.org/10.1007/s10853-020-05725-w

    Article  CAS  Google Scholar 

  6. J. Niu, Y. Guo, K. Li, W. Liu, Z. Dan, Z. Sun, H. Chang, L. Zhou, Improved mechanical, bio-corrosion properties and in vitro cell responses of Ti-Fe alloys as candidate dental implants. Mater. Sci. Eng. C. 122, 111917 (2021). https://doi.org/10.1016/j.msec.2021.111917

    Article  CAS  Google Scholar 

  7. J. Park, R.S. Lakes, Biomaterials: An Introduction (Springer, Berlin, 2007)

    Google Scholar 

  8. A. Kogure, Y. Mori, H. Tanaka, M. Kamimura, N. Masahashi, S. Hanada, E. Itoi, Effects of elastic intramedullary nails composed of low Young’s modulus Ti-Nb-Sn alloy on healing of tibial osteotomies in rabbits. J. Biomed. Mater. Res. Part B Appl. Biomater. 107, 700–707 (2019). https://doi.org/10.1002/jbm.b.34163

    Article  CAS  Google Scholar 

  9. A. Angelini, G. Trovarelli, A. Berizzi, E. Pala, A. Breda, P. Ruggieri, Three-dimension-printed custom-made prosthetic reconstructions: from revision surgery to oncologic reconstructions. Int. Orthop. 43, 123–132 (2018). https://doi.org/10.1007/s00264-018-4232-0

    Article  PubMed  Google Scholar 

  10. A.R.V. Nunes, S.B. Gabriel, C.A. Nunes, L.S. Araújo, R. Baldan, P. Mei, L. Malet, J. Dille, L.H. de Almeida, Microstructure and mechanical properties of Ti-12Mo-8Nb alloy hot swaged and treated for orthopedic applications. Mater. Res. 20, 526–531 (2017). https://doi.org/10.1590/1980-5373-MR-2017-0637

    Article  Google Scholar 

  11. G. Manivasagam, D. Dhinasekaran, A. Rajamanickam, Biomedical implants: corrosion and its prevention—a review. Recent Pat. Corros. Sci. 2, 40–54 (2010). https://doi.org/10.2174/1877610801002010040

    Article  CAS  Google Scholar 

  12. N. Shayesteh Moghaddam, M.T. Andani, A. Amerinatanzi, C. Haberland, S. Huff, M. Miller, M. Elahinia, D. Dean, Metals for bone implants: safety, design, and efficacy. Biomanuf. Rev. 1, 1 (2016). https://doi.org/10.1007/s40898-016-0001-2

    Article  Google Scholar 

  13. M. Najafizadeh, M. Ghasempour-Mouziraji, M. Hosseinzadeh, S. Yazdi, A. Sarrafan, M. Bozorg, P. Cavaliere, A. Laska, M. Szkodo, Optimization of biocorrosion resistance and mechanical properties of PM Ti-XAl-2Fe-3Cu alloys by response surface methodology. J. Mater. Sci. 57, 18669–18686 (2022). https://doi.org/10.1007/s10853-022-07768-7

    Article  CAS  Google Scholar 

  14. H. Matsumoto, S. Watanabe, S. Hanada, Microstructures and mechanical properties of metastable β TiNbSn alloys cold rolled and heat treated. J. Alloys Compd. 439, 146–155 (2007). https://doi.org/10.1016/j.jallcom.2006.08.267

    Article  CAS  Google Scholar 

  15. T. Grover, A. Pandey, S. Kumari, A. Awasthi, B. Singh, P. Dixit, P. Singhal, K.K. Saxena, Role of titanium in bio implants and additive manufacturing: an overview. Mater. Today Proc. 26, 3071–3080 (2020). https://doi.org/10.1016/j.matpr.2020.02.636

    Article  CAS  Google Scholar 

  16. Z. Yuan, Y. He, C. Lin, P. Liu, K. Cai, Antibacterial surface design of biomedical titanium materials for orthopedic applications. J. Mater. Sci. Technol. 78, 51–67 (2021). https://doi.org/10.1016/j.jmst.2020.10.066

    Article  CAS  Google Scholar 

  17. S. Bahl, S. Das, S. Suwas, K. Chatterjee, Engineering the next-generation tin containing β titanium alloys with high strength and low modulus for orthopedic applications. J. Mech. Behav. Biomed. Mater. 78, 124–133 (2018). https://doi.org/10.1016/j.jmbbm.2017.11.014

    Article  CAS  PubMed  Google Scholar 

  18. X. Liu, S. Chen, J.K.H. Tsoi, J.P. Matinlinna, Binary titanium alloys as dental implant materials—a review. Regen. Biomater. 4, 315–323 (2017). https://doi.org/10.1093/rb/rbx027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. A. Rodriguez-Contreras, M. Punset, J.A. Calero, F.J. Gil, E. Ruperez, J.M. Manero, Powder metallurgy with space holder for porous titanium implants: a review. J. Mater. Sci. Technol. 76, 129–149 (2020). https://doi.org/10.1016/j.jmst.2020.11.005

    Article  CAS  Google Scholar 

  20. S. Parvizi, S.M. Hashemi, F. Asgarinia, M. Nematollahi, M. Elahinia, Effective parameters on the final properties of NiTi-based alloys manufactured by powder metallurgy methods: a review. Prog. Mater. Sci. 117, 100739 (2021). https://doi.org/10.1016/j.pmatsci.2020.100739

    Article  CAS  Google Scholar 

  21. A. Azmat, M. Tufail, A.D. Chandio, Synthesis and characterization of Ti-Sn alloy for orthopedic application. Materials. 14, 7660 (2021). https://doi.org/10.3390/ma14247660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. H.W. Liu, D. Paul Bishop, K.P. Plucknett, A comparison of Ti-Ni and Ti-Sn binary alloys processe dusing powder metallurgy. Mater. Sci. Eng. A. 644, 392–404 (2015). https://doi.org/10.1016/j.msea.2015.07.085

    Article  CAS  Google Scholar 

  23. L.C. Tsao, Effects of Cu addition on the microstructure and mechanical properties of Ti15Sn alloys. Mater. Sci. Eng. A. 698, 98–103 (2017). https://doi.org/10.1016/j.msea.2017.05.046

    Article  CAS  Google Scholar 

  24. L.C. Tsao, S.Y. Chang, Influence of Cu addition on the structures and properties of Ti15SnxCu alloys. Mater. Sci. Technol. 33(15), 1846–1853 (2017). https://doi.org/10.1080/02670836.2017.1325565

    Article  CAS  Google Scholar 

  25. W.D. Callister, Materials Science and Engineering: An Introduction, 7th edn (Wiley, New York, 2007)

    Google Scholar 

  26. J.L. Murray, in The Sn-Ti (Tin-Titanium) System, Phase Diagrams of Binary Titanium Alloys. ed. by J.L. Murray (ASM International, Metals Park, 1987), pp.294–299

    Google Scholar 

  27. H.C. Hsu, S.C. Wu, Y.S. Hong, W.F. Ho, Mechanical properties and deformation behavior of as-cast Ti-Sn alloys. J. Alloys Compd. 479, 390–394 (2009). https://doi.org/10.1016/j.jallcom.2008.12.064

    Article  CAS  Google Scholar 

  28. M. Najafizadeh, D. Zhang, A. Maldar, M. Bozorg, J. Liang, Microstructure and mechanical properties of a high-strength Ti-4Al-2Fe-3Cu alloy fabricated by sintering and hot extrusion. Metall. Mater. Trans. A. 53, 1955–1968 (2022). https://doi.org/10.1007/s11661-022-06668-4

    Article  CAS  Google Scholar 

  29. M. Ghasempour-Moziraji, M.B. Limouei, M. Najafizadeh, M. Hossainzadeh, P. Cavaliere, The effect of simple shear extrusion on the mechanical properties and microstructure of copper. J. Mat. Lett. 335, 133815 (2023). https://doi.org/10.1016/j.matlet.2022.133815

    Article  CAS  Google Scholar 

  30. J.C. Williams, G. Lütjering, Titanium, 2nd edn (Springer, New York, 2007)

    Google Scholar 

  31. M. Najafizadeh, M. Bozorg, M. Ghasempour-Mouziraji, C. Goulas, P. Cavaliere, The effect of additing Sn on the mechanical properties and microstructure of the titanium. Mater. Lett. 351, 135044 (2023). https://doi.org/10.1016/j.matlet.2023.135044

    Article  CAS  Google Scholar 

  32. M. Najafizadeh, A. Bahadoran, M. Bozorg, B. Sadeghi, J. Liang, D. Zhang, Microstructures and mechanical properties of high strength Ti-XAl-2Fe-3Cu alloys fabricated by powder compact extrusion. J. Alloys Compd. 884, 161136 (2021). https://doi.org/10.1016/j.jallcom.2021.161136

    Article  CAS  Google Scholar 

  33. W.F. Ho, C.P. Ju, J.H. Chern Lin, Structure and properties of cast binary Ti-Mo alloys. Biomaterials. 20, 2115–2122 (1999). https://doi.org/10.1016/S0142-9612(99)00114-3

    Article  CAS  PubMed  Google Scholar 

  34. O.N. Senkov, M. Dubois, J.J. Jonas, Elastic moduli of titanium-hydrogen alloys in the temperature range 20 °C to 1100 °C. Metall. Mater. Trans. A. 27, 3963–3970 (1996). https://doi.org/10.1007/BF02595645

    Article  Google Scholar 

  35. M. Bozorg, T. Shahrabi Farahani, J. Neshati, G. Mohammadi Ziarani, Z. Chaghazardi, P. Gholamzade, F. Ektefa, Corrosion inhibitive behavior of 7-hydroxyphenoxazone on mild steel in 10 M HCl. Res. Chem. Intermed. (2014). https://doi.org/10.1007/s11164-014-1722-6

    Article  Google Scholar 

  36. M.A. Hegazy, A.M. Badawi, S.S.A. El, W.M. Kamel, Corrosion inhibition of carbon steel using novel N-(2-(2-mercaptoacetoxy)ethyl)-N,N-dimethyl dodecan-1-aminium bromide during acid pickling. Corros. Sci. 69, 110–122 (2013). https://doi.org/10.1016/j.corsci.2012.11.031

    Article  CAS  Google Scholar 

  37. S.L. De Assis, S. Wolynec, I. Costa, Corrosion characterization of titanium alloys by electrochemical techniques. Electrochim. Acta. 51, 1815–1819 (2006). https://doi.org/10.1016/j.electacta.2005.02.121

    Article  CAS  Google Scholar 

  38. B. Sivakumar, L.C. Pathak, R. Singh, Role of surface roughness on corrosion and fretting corrosion behaviour of commercially pure titanium in Ringer’s solution for bio-implant application. Appl. Surf. Sci. (2017). https://doi.org/10.1016/j.apsusc.2017.01.033

    Article  Google Scholar 

  39. M. Bahraminasab, M. Bozorg, S. Ghaffari, F. Kavakebian, Corrosion of Al2O3-Ti composites under inflammatory condition in simulated physiological solution. Mater. Sci. Eng. C. 102, 200–211 (2019). https://doi.org/10.1016/j.msec.2019.04.047

    Article  CAS  Google Scholar 

  40. X.Q. Wu, Q. Peng, J.C. Zhao, J.G. Lin, Effect of Sn content on the corrosion behavior of Ti-based biomedical amorphous alloys. Int. J. Electrochem. Sci. 10, 2045–2054 (2015)

    Article  CAS  Google Scholar 

  41. F.Y. Zhou, K.J. Qiu, D. Bian, Y.F. Zheng, J.P. Lin, A comparative invitro study on biomedical Zr-2.5X (X = Nb, Sn) alloys. J. Mater. Sci. Technol. 30, 299–306 (2014). https://doi.org/10.1016/j.jmst.2013.12.006

    Article  CAS  Google Scholar 

  42. L.C. Tsao, Effect of Sn addition on the corrosion behavior of Ti-7Cu-Sn cast alloys for biomedical applications. Mater. Sci. Eng. C. 46, 246–252 (2015). https://doi.org/10.1016/j.msec.2014.10.037

    Article  CAS  Google Scholar 

  43. M. Thomas, T. Lindley, D. Rugg, M. Jackson, The effect of shot peening on the microstructure and properties of a near-alpha titanium alloy following high temperature exposure. Acta Mater. 60, 5040–5048 (2012). https://doi.org/10.1016/j.actamat.2012.06.017

    Article  CAS  Google Scholar 

  44. M. Seifzadeh Omrani, M. Karimi, M. Bozorg, Characterization and comparison of TiN coatings deposited on coarse- and nano-grained substrates. Met. Mater. Int. (2022). https://doi.org/10.1007/s12540-022-01233-5

    Article  Google Scholar 

  45. Y.B. Lei, Z.B. Wang, B. Zhang, Z.P. Luo, J. Lu, K. Lu, Enhanced mechanical properties and corrosion resistance of 316L stainless steel by pre-forming a gradient nanostructured surface layer and annealing. Acta Mater. (2021). https://doi.org/10.1016/j.actamat.2021.116773

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Najafizadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafizadeh, M., Bozorg, M., Yazdi, S. et al. Mechanical and Biocorrosion Properties of Ti-XSn (X = 0, 5, 10, 15 wt.%) Alloys for Biomedical Application Fabricated by Powder Metallurgy. Metallogr. Microstruct. Anal. 13, 18–28 (2024). https://doi.org/10.1007/s13632-023-01034-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-023-01034-1

Keywords

Navigation