Skip to main content
Log in

Effect of Water Cooling and Vibration on the Performances of Friction-Stir-Welded AA5083 Aluminum Joints

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

In this work, friction stir welding of Al5083 joining under different welding conditions was investigated. The vibration was applied by the motor into the fixture located under the workpiece while the cooling condition flows through a canal in the fixture under the weld line. The results indicated that water reduces the temperature distribution for all thermocouples. The microstructure of the stir zone for different welding conditions showed that the grain size reduces when water and vibration were applied simultaneously. The results showed that mechanical properties such as tensile test, hardness, formability index, and fracture surface of friction stir vibration welding with the cooling improve in comparison with those samples from other welding conditions. This was related to the development of smaller grains, higher strain rate, and lower input heat into the workpiece as vibration and water system were applied. Finally, the corrosion behaviors of samples under different welding conditions were analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

FSW:

Friction stir welding

FSVW:

Friction stir vibration welding

NZ:

Nugget zone

SZ:

Stir zone

TMAZ:

Thermomechanically affected zone

HAZ:

Heat-affected zone

Z:

Zener–Hollomon parameter

R :

Gas constant

SEM:

Scanning electron microscopy

EDS:

Energy-dispersive spectrometry

UFSW:

Underwater friction stir welding

EDM:

Electrical discharge machining

UTS:

Ultimate tensile strength

ɛ :

Strain rate

D :

Grain size

BCP:

Boundary condition problems

TC:

Thermocouple

EL:

Elongation

Ra:

Average surface roughness

AFM:

Atomic force microscopy

I coor :

Current density

C.R:

Corrosion rate

References

  1. J.A. Vander Hoever, L. Zhuang, I.B. Schepers, J.P. Desmet, J.P. Baekelandt, A new 5xxx series alloy developed for automotive applications. Aluminum 78, 750–754 (2002)

    Google Scholar 

  2. B. Toore, C.H. Arild, H.O. Sture, L. Magnus, Perforation of AA5083-H116 aluminium plates with conical-nose steel projectiles. Int. J. Impact Eng. 30, 367–384 (2004)

    Google Scholar 

  3. R.H. Jones, C.F. Windissch Jr, Stress corrosion cracking of lightweight automotive materials. In: TMS Annual Meeting, pp 43–54 (2003)

  4. R.H. Jones, The influence of hydrogen on the stress-corrosion cracking of low-strength Al-Mg alloys. JOM 55, 42–46 (2003)

    CAS  Google Scholar 

  5. M. Abbasi, B. Bagheri, R. Keivani, Thermal analysis of friction stir welding process and investigation into affective parameters using simulation. J. Mech. Sci. Technol. 29, 861–866 (2015)

    Google Scholar 

  6. S. Tanaka, M. Kumagai, Effect of welding direction on joining dissimilar alloys between AA5083 and A6N01 by friction stir welding. Weld. Int. J. 24, 77–80 (2010)

    Google Scholar 

  7. E.C. Bonome, C.B. Carletti, N.G. Delacantara, J.F. Dos Santos, Friction stir welding-FSW applied to tailored blanks. Weld. Int. J. 21, 279–283 (2007)

    Google Scholar 

  8. R. Keivani, B. Bagheri, F. Sharifi, M. Ketabchi, M. Abbasi, Effects of pin angle and preheating on temperature distribution during friction stir welding operation. Trans. Nonferrous Metals Soc. China 23, 2708–2713 (2013)

    CAS  Google Scholar 

  9. Z. Zhang, H.W. Zhange, Numerical studies on controlling of process parameters in friction stir welding. J. Mater. Process. Technol. 209, 241–270 (2009)

    CAS  Google Scholar 

  10. G.K. Padhy, C.S. Wu, S. Gao, Auxiliary energy assisted friction stir welding - a status review. Sci. Technol. Weld. Join. 20(8), 631–649 (2015)

    CAS  Google Scholar 

  11. S. Gao, C.S. Wu, G.K. Padhy, L. Shi, Evaluation of local strain distribution in ultrasonic enhanced Al 6061–T6 friction stir weld nugget by EBSD analysis. Mater. Des. 99, 35–144 (2016)

    Google Scholar 

  12. H. Liu, Y. Hu, S. Du, Microstructure characterization and mechanism of acoustoplastic effect in friction stir welding assisted by ultrasonic vibrations on the bottom surface of workpieces. J. Mater. Process. Technol. 42, 159–166 (2019)

    Google Scholar 

  13. G.K. Padhy, C.S. Wu, S. Gao, Local microstructure evolution in Al 6061–T6 friction stir weld nugget enhanced by ultrasonic vibration. Mater. Des. 92, 710–723 (2016)

    CAS  Google Scholar 

  14. X.C. Liu, C.S. Wu, G.K. Padhy, Improved weld macrosection, microstructure and mechanical properties of 2024Al-T4 butt joints in ultrasonic vibration enhanced friction stir welding. Sci. Technol. Weld. Join. 20(4), 345–435 (2024Al)

    CAS  Google Scholar 

  15. S. Amini, M.R. Amiri, Study of ultrasonic vibrations effect on friction stir welding. Int. J. Adv. Manuf. Technol. 73(1–4), 127–135 (2014)

    Google Scholar 

  16. B. Strass, G. Wagner, D. Eifler, Realization of Al/Mg-hybrid-joints by ultrasound supported friction stir welding. Mater. Sci. Forum 783–786, 1814–1819 (2014)

    Google Scholar 

  17. X.C. Liu, C.S. Wu, G.K. Padhy, Characterization of plastic deformation and material flow in ultrasonic vibration enhanced friction stir welding. Scripta Mater. 102, 95–98 (2015)

    Google Scholar 

  18. S. Ji, X. Meng, Z. Liu, Dissimilar friction stir welding of 6061 aluminum alloy and AZ31 magnesium alloy assisted with ultrasonic. Mater. Lett. 201, 173–176 (2017)

    CAS  Google Scholar 

  19. V. Patel, W. Li, A. Vairis, V. Badheka, Recent development in friction stir processing as a solid-state grain refinement technique: microstructural evolution and property enhancement. Crit. Rev. Solid State Mater. Sci. 44, 377–425 (2019)

    Google Scholar 

  20. V.V. Patel, V. Badheka, A. Kumar, Friction stir processing as a novel technique to achieve superplasticity in aluminum alloys: process variables, variants, and applications. Metallogr. Microstruct. Anal. (2016). https://doi.org/10.1007/s13632-016-0285-x

    Article  Google Scholar 

  21. K. Selvam, A. Ayyagari, H.S. Grewal, S. Mukherjee, H.S. Arora, Enhancing the erosion-corrosion resistance of steel through friction stir processing. Wear (2017). https://doi.org/10.1016/j.wear.2017.06.009

    Article  Google Scholar 

  22. K. Dudzik, W. Jurczak, Influence of friction stir welding on corrosion properties of AW-7020M alloy in sea water. Adv. Mater. Sci. 15(1), 7–13 (2015)

    Google Scholar 

  23. G. Rambabu, D. Balaji Naik, C.H. Venkata Rao, K. Srinivasa Rao, Madhusudan Reddy G (2015) Optimization of friction stir welding parameters for improved corrosion resistance of AA2219 aluminum alloy joints. Defence Technol. (2015). https://doi.org/10.1016/j.dt.2015.05.003

    Article  Google Scholar 

  24. B.M. Hariri, S.G. Shiri, Y. Yaghoubinezhad, M.M. Rahvard, The optimum combination of tool rotation rate and traveling speed for obtaining the preferable corrosion behavior and mechanical properties of friction stir welded AA5052 aluminum alloy. Mater. Des. 50, 620–634 (2013)

    Google Scholar 

  25. S. Rasouli, R. Behnagh, A. Dadvand, N. Saleki-Haselghoubi, Improvement in corrosion resistance of 5083 aluminum alloy via friction stir processing, in Processing IMechE Part L: Journal Materials Design Appllication. (2014). DOI: 10.1177/1464420714552539.

    Google Scholar 

  26. Z. Zhang, H.W. Zhang, Solid mechanics-based eulerian model of friction stir welding. Int. J. Adv. Manuf. 72, 1647–1653 (2014)

    Google Scholar 

  27. M.A. Mofid, A. Abdollah-zedeh, F.M. Ghaini, The effect of water cooling during dissimilar friction stir welding of Al alloy to Mg alloy. Mater. Des. 36, 161–167 (2012)

    CAS  Google Scholar 

  28. H.J. Zhang, H.J. Liu, L. Yu, Effect of water cooling on the performances of friction stir welding heat-affected zone. J. Mater. Eng. Perform. 21, 1182–1187 (2012)

    CAS  Google Scholar 

  29. L. Fratini, G. Buffa, R. Shivpuri, In-process heat treatments to improve FS-welded butt joints. Int. J. Adv. Manuf. Technol. 43, 664–670 (2009)

    Google Scholar 

  30. V. Patel, W. Li, Y. Xu, Stationary shoulder tool in friction stir processing: a novel low heat input tooling system for magnesium alloy. Mater. Manuf. Process. (2018). https://doi.org/10.1080/10426914.2018.1544716

    Article  Google Scholar 

  31. H.S. Sekhon, R. Kumar, P. Dhingra, Optimization of mechanical properties of aluminium based alloy (A356) with friction stir welding. Int. Adv. Res. J. Sci. Eng. Technol. (2016)

  32. A. Sedaghati, H.A. Bouzary, Study on the effect of cooling on microstructure and mechanical properties of friction stir-welded AA5086 aluminum butt and lap joints. J. Mater. Des. Appl. (2017). https://doi.org/10.1177/1464420717726562

    Article  Google Scholar 

  33. B. Bagheri, A.A. Mahdian Rizi, M. Abbasi, M. Givi, Friction stir spot vibration welding: improving the microstructure and mechanical properties of Al5083 joint. J. Metallogr. Microstruct. Anal. (2019)

  34. B. Bagheri, M. Abbasi, M. Givi, Effects of vibration on microstructure and thermal properties of friction stir spot welded (FSSW) aluminum alloy (Al5083). Int. J. Precis. Eng. Manuf. (2019). https://doi.org/10.1007/s12541-019-00134-9

    Article  Google Scholar 

  35. J.J. Jonas, X. Quelennec, L. Jiang, E. Martin, The avrami kinetics of dynamic recrystallization. Acta Mater. 57, 2748–2756 (2009)

    CAS  Google Scholar 

  36. W.D. Callister, Materials Science and Engineering: An Introduction (Wiley, New York, 2007)

    Google Scholar 

  37. C.I. Chang, C.J. Lee, J.C. Huang, Relationship between grain size and Zener-Holloman parameter during friction stir processing in AZ31 Mg alloys. Script Mater. 51, 509–514 (2008)

    Google Scholar 

  38. M. Abbasi, A. Abdolahzadeh, B. Bagheri, H. Omidvar, The effect of SiC particle addition during FSW on microstructure and mechanical properties of AZ31 magnesium alloy. J. Mater. Eng. Perform 24, 5037–5045 (2015)

    CAS  Google Scholar 

  39. B. Bagheri, M. Abbasi, Analysis of microstructure and mechanical properties of friction stir vibration welded (FSVW) 5083 aluminum alloy joints: experimental and simulation. J. Weld. Join. 37, 243–253 (2019). https://doi.org/10.5781/JWJ.2019.37.3.82019

    Article  Google Scholar 

  40. V. Patel, W. Li, X. Liu, Q. Wen, Y. Su, Through-thickness microstructure and mechanical properties in stationary shoulder friction stir processed AA7075. Mater. Sci. Technol. 35, 1762–1769 (2019). https://doi.org/10.1080/02670836.2019.1641459

    Article  CAS  Google Scholar 

  41. B.W. Huang, Q.D. Qin, D.H. Zhang, Y.J. Wu, X.D. Su, Microstructure and mechanical properties of dissimilar joints of Al-Mg2Si and 5052 aluminum alloy by friction stir welding. J. Mater. Eng. Perform 27(4), 1898–1907 (2018)

    CAS  Google Scholar 

  42. V. Patel, W. Li, G. Wang, F. Wang, A. Vairis, P. Niu, Friction stirwelding of dissimilar aluminum alloy combinations: state-of-the-art. Metals 9, 270 (2019). https://doi.org/10.3390/met9030270

    Article  CAS  Google Scholar 

  43. B. Chaudhary, V. Patel, P.L. Ramkumar, J. Vora, Temperature distribution during friction stir welding of AA2014 aluminum alloy: experimental and statistical analysis. Trans. Indian Inst. Metals 72, 969–981 (2019). https://doi.org/10.1007/s12666-018-01558-z

    Article  CAS  Google Scholar 

  44. V.V. Patel, V.J. Badheka, A. Kumar, Influence of pin profile on the tool plunge stage in friction stir processing of Al–Zn–Mg–Cu alloy. Trans. Indian Inst. Metals (2016). https://doi.org/10.1007/s12666-016-0903-y

    Article  Google Scholar 

  45. Y.Z. Estrain, P.A. Zabrodin, I.S. Braude, T.V. Grigorova, N.V. Lasev, V.V. Pustovalov, V.S. Fomenko, S.E. Shumilin, Low temperature plastic deformation of AZ31 mag-nesium alloy with different microstructures. Low Temp. Phys. 36, 1100–1112 (2010)

    Google Scholar 

  46. J.A. Spittle, A.A. Cushway, Influence of superheat and grain structure on hot-tearing susceptibilities of Al-Cu alloy castings. Metals Technol. 10, 6–13 (1983)

    CAS  Google Scholar 

  47. W.F. Xu, J.H. Liu, D.L. Chen, G.H. Luan, J.S. Yao, Improvements of strength and ductility in aluminum alloy joints via rapid cooling during friction stir welding. Mater. Sci. Eng. A 548, 89–98 (2012)

    CAS  Google Scholar 

  48. S.Q. Wang, J.H. Liu, D.L. Chen, Effect of strain rate and temperature on strain hardening behavior of a dissimilar joint between Ti–6Al–4V and Ti17 alloys. Mater. Des. 56, 174–184 (2014)

    CAS  Google Scholar 

  49. N. Afrin, D.L. Chen, X. Cao, M. Jahazi, Strain hardening behavior of a friction stir welded magnesium alloy. Scripta Mater. 57, 1004–1007 (2007)

    CAS  Google Scholar 

  50. G.E. Diter, Mechanical Metallurgy (McGraw-Hill Book Company, Singapore, 1988)

    Google Scholar 

  51. W.W. Zhang, S. Cong, Failure analysis of SUS304 sheet during hydro-bulging based on GTN ductile damage model. Int. J. Adv. Manuf. Technol. 86, 427–435 (2016)

    Google Scholar 

  52. M. Abbasi, M. Givi, B. Bagheri, Application of vibration to enhance the efficiency of friction stir processing. J. Trans. Nonferrous Metals Soc. China 29, 1393–1400 (2019)

    CAS  Google Scholar 

  53. M. Abbasi, M.A. Shafaat, M. Ketabchi, D. Haghshenas, M. Abbasi, Application of the GTN model to predict the forming limit diagram of IF-steel. J. Mech. Sci. Technol. 26, 345–352 (2012)

    Google Scholar 

  54. J.H. Cho, S.H. Han, C.G. Lee, Cooling effect on microstructure and mechanical properties during friction stir welding of Al-Mg-Si aluminum alloys. Mater. Lett. 180, 157–161 (2016)

    CAS  Google Scholar 

  55. M. Rahmi, A. Abbasi, Friction stir welding process: modified version of friction stir welding process. Int. J. Adv. Manuf. Technol. 90, 141–151 (2017)

    Google Scholar 

  56. Y.S. Sato, S.H.C. Park, H. Kokawa, Microtexture in the friction-stir weld of an aluminum alloy. Metall. Mater. Trans. A 32A, 3033–3042 (2001)

    CAS  Google Scholar 

  57. P. Zhang, S.X. Li, Z.F. Zhang, General relationship between strength and hardness. Mater. Sci. Eng. A 529, 62–73 (2011)

    CAS  Google Scholar 

  58. H. Li, F. Ebrahimi, Synthesis and characterization of electrodeposited nanocrystalline nickel–iron alloys. Mater. Sci. Eng. A 347, 93–101 (2003)

    Google Scholar 

  59. A. Gheysarian, M. Abbasi, The effect of aging on microstructure, formability and spring back of Ti-6Al-4V titanium alloy. J. Mater. Eng. Perform. 26, 374–382 (2017)

    CAS  Google Scholar 

  60. M. Imam, Y. Sun, H. Fujii, N. Ma, S. Tsutsumi, H. Murakawa, Microstructural characteristics and mechanical properties of friction stir welded thick 5083 aluminum alloy. Metall. Mater. Trans. A. 48, 208–229 (2016). https://doi.org/10.1007/s11661-016-3819-6

    Article  CAS  Google Scholar 

  61. O.J. Adigun, The effect of sensitization on the corrosion susceptibility and tensile properties of AA5083 aluminum. M.S.C Thesis, University of Saskatchewan (2006).

  62. L. Zhaoqi, J. Jiaren, Z. Gang, R. Huongqiang, Effect of intergranular segregation of Mg on the exfoliative corrosion in Al-Mg alloys. Collosion de Phys. J. 1(1), 575–580 (1990)

    Google Scholar 

  63. G.M. Scamans, N.J.H. Holroyd, C.D.S. Tuck, Role of magnesium segregation in the intergranular stress corrosion cracking of aluminum alloys. J. Corrosion Sci. 27(4), 329–347 (1987)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Bagheri.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, B., Abbasi, M. & Dadaei, M. Effect of Water Cooling and Vibration on the Performances of Friction-Stir-Welded AA5083 Aluminum Joints. Metallogr. Microstruct. Anal. 9, 33–46 (2020). https://doi.org/10.1007/s13632-019-00606-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-019-00606-4

Keywords

Navigation