Skip to main content
Log in

Effect of Martensite Morphology on Tribological Behaviour of a Low-Alloy Steel

  • Technical Note
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Few works are devoted to study the microstructure effect on tribological behaviors of contacting materials. The most of them are only focused on wear and without fixing the hardness and/or the chemical composition. A contribution is proposed by investigating the combined effects of microstructure and abrasive particle size. Friction tests are performed for steel pins characterized by various microstructures with similar hardness level (around 410 \( {H_{\text{V}}} \)) and chemical composition. The microstructures are composed of a quenched martensitic microstructure, a tempered martensitic microstructure, and ferrite–martensite dual-phase microstructures with various martensite colony morphologies. These pins slide against abrasive papers with various particle sizes, from 15 to 200 μm, under different normal loads from 50 to 110 N. Dual-phase microstructures enhance friction and wear behaviors. Among these microstructures, compared to fine and fibrous martensite colony morphologies, coarse and equiaxed martensite colonies minimize friction coefficient and wear rate. It is worth noting that for a given load, a transition in friction behavior is observed for a critical particle size (CPS) which depends on microstructure and normal load. This study also showed that whatever the microstructure and the abrasive particle sizes, friction coefficients decrease with increasing normal load. However, for wear rate, a reverse trend is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Holmberg, A. Erdemir, Global impact of friction on energy consumption, economy and environment. FME Trans. 43(3), 181–185 (2001)

    Google Scholar 

  2. C. Trevisiol, A. Jourani, S. Bouvier, Effect of martensite volume fraction and abrasive particles size on friction and wear behaviour of a low alloy steel. Tribol. Int. 113, 411–425 (2017)

    Article  CAS  Google Scholar 

  3. N.B. Dube, I.M. Hutchings, Influence of particle fracture in the high-stress and low-stress abrasive wear of steel. Wear 233–235, 246–256 (1999)

    Article  Google Scholar 

  4. A. Jourani, B. Hagège, B. Bouvier, M. Bigerelle, H. Zahouani, Influence of abrasive grain geometry on friction coefficient and wear rate in belt finishing. Tribol. Int. 59, 30–37 (2013)

    Article  Google Scholar 

  5. A. Jourani, S. Bouvier, Friction and wear mechanisms of 316L stainless steel in dry sliding contact: effect of abrasive particle size. Tribol. Trans. 58(1), 131–139 (2015)

    Article  CAS  Google Scholar 

  6. M. Singh, D.P. Mondal, A.K. Jha, A.H. Yegneswarn, High stress abrasive wear behavior of sillimanite-reinforced Al-alloy matrix composite: a factorial design approach. J. Mater. Eng. Perform. 12(3), 331–338 (2003)

    Article  CAS  Google Scholar 

  7. A.K. Jha, A. Gachake, B.K. Prasad, R. Dasgupta, M. Singh, A.H. Yegneswaran, High stress abrasive wear behavior of some hardfaced surfaces produced by thermal spraying. J. Mater. Eng. Perform. 11(1), 37–45 (2002)

    Article  CAS  Google Scholar 

  8. A. Jourani, M. Dursapt, H. Hamdi, J. Rech, H. Zahouani, Effect of the belt grinding on the surface texture: modelling of the contact and abrasive wear. Wear 259(7–12), 1137–1143 (2005)

    Article  CAS  Google Scholar 

  9. S. Harsha, D.K. Dwivedi, A. Agarwal, Performance of flame sprayed Ni-WC coating under abrasive wear conditions. J. Mater. Eng. Perform. 17(1), 104–110 (2008)

    Article  CAS  Google Scholar 

  10. R.M. Muñoz Riofano, L.C. Casteletti, P.A.P. Nascente, Effect of ion nitriding on the abrasive wear resistance of ultrahigh-strength steels with different silicon contents. J. Mater. Eng. Perform. 14(1), 75–84 (2005)

    Article  CAS  Google Scholar 

  11. A. Misra, I. Finnie, On the size effect in abrasive and erosive wear. Wear 65, 359–373 (1981)

    Article  Google Scholar 

  12. M.M. Khruschov, Principles of abrasive wear. Wear 28, 69–88 (1974)

    Article  Google Scholar 

  13. R. Gåhlin, S. Jacobson, The particle size effect in abrasion studied by controlled abrasive surfaces. Wear 224, 18–125 (1999)

    Article  Google Scholar 

  14. E. Rabinowicz, A. Mutis, Effect of abrasive particle size on wear. Wear 8, 381–390 (1965)

    Article  Google Scholar 

  15. C. Trevisiol, A. Jourani, S. Bouvier, Effect of hardness, microstructure, normal load and abrasive size on friction and on wear behaviour of 35NCD16 steel. Wear 388–389, 101–111 (2017)

    Article  CAS  Google Scholar 

  16. J. Wahlström, L. Olander, U. Olofsson, A pin-on-disc study focusing on how different load levels affect the concentration and size distribution of airborne wear particles from the disc brake materials. Tribol. Lett. 46, 195–204 (2012)

    Article  Google Scholar 

  17. K. Hokkirigawa, K. Kato, Z.Z. Li, The effect of hardness on the transition of the abrasive wear mechanism of steels. Wear 123, 241–251 (1988)

    Article  CAS  Google Scholar 

  18. J. Goddard, H. Wilman, A theory of friction and wear during the abrasion of metals. Wear 5, 114–135 (1962)

    Article  Google Scholar 

  19. H. Somekawa, S. Maeda, T. Hirayama, T. Matsuoka, T. Inoue, T. Mukai, Microstructural evolution during dry wear test in magnesium and Mg-Y alloy. Mater. Sci. Eng. A 561, 371–377 (2013)

    Article  CAS  Google Scholar 

  20. P. Xu, B. Bai, F. Yin, H. Fang, K. Nagai, Microstructure control and wear resistance of grain boundary allotriomorphic ferrite/granular bainite duplex steel. Mater. Sci. Eng. A 385, 65–73 (2004)

    Article  CAS  Google Scholar 

  21. O.P. Modi, P. Pandit, D.P. Mondal, B.K. Prasad, A.H. Yegneswaran, A. Chrysanthou, High-stress abrasive wear response of 0.2% carbon dual phase steel: effects of microstructural features and experimental conditions. Mater. Sci. Eng. A 458, 303–311 (2007)

    Article  CAS  Google Scholar 

  22. X. Xu, W. Xu, F.H. Ederveen, S. van der Zwaag, Design of low hardness abrasion resistant steels. Wear 301, 89–93 (2013)

    Article  CAS  Google Scholar 

  23. X. Xu, S. Van der Zwaag, W. Xu, The effect of ferrite-martensite morphology on the scratch and abrasive wear behaviour of a dual phase construction steel. Wear 348–349, 148–157 (2016)

    Article  CAS  Google Scholar 

  24. D.A. Rigney, The roles of hardness in the sliding behavior of materials. Wear 175, 63–69 (1994)

    Article  Google Scholar 

  25. K.-H. ZumGahr, Microstructure and Wear of Material, Tribology Series, vol. 10 (Elsevier, Amsterdam, 1987)

    Google Scholar 

  26. H. Saghafian, S. Kheirandish, Correlating microstructural features with wear resistance of dual phase steel. Mater. Lett. 61, 3059–3063 (2007)

    Article  CAS  Google Scholar 

  27. V. Abouei, H. Saghafian, S. Kheirandish, Dry sliding oxidative wear in plain carbon dual phase steel. J. Iron. Steel Res. Int. 14(4), 43–48 (2001)

    Article  Google Scholar 

  28. J.J. Coronado, S.A. Rodríguez, A. Sinatora, Effect of particle hardness on mild–severe wear transition of hard second phase materials. Wear 301(1–2), 82–88 (2013)

    Article  CAS  Google Scholar 

  29. H. Ghassemi-Armaki, R. Maaß, S.P. Bhat, S. Sriram, J.R. Greer, K.S. Kumar, Deformation response of ferrite and martensite in a dual-phase steel. Acta Mater. 62, 197–211 (2014)

    Article  CAS  Google Scholar 

  30. G.R. Speich, W.C. Leslie, Tempering of steel. Metall. Trans. 3(5), 1043–1054 (1972)

    Article  CAS  Google Scholar 

  31. C. Zhang, Q. Wang, J. Ren, R. Li, M. Wang, F. Zhang, K. Sun, Effect of martensitic morphology on mechanical properties of an as-quenched and tempered 25CrMo48V steel. Mater. Sci. Eng. A 534, 339–346 (2012)

    Article  CAS  Google Scholar 

  32. R. Tyagi, S.K. Nath, S. Ray, Effect of martensite content on friction and oxidative wear behavior of 0.42 Pct carbon dual-phase steel. Metall. Mater. Trans. A 33, 3479–3488 (2002)

    Article  Google Scholar 

  33. P. Movahed, S. Kolahgar, S.P.H. Marashi, M. Pouranvari, N. Parvin, The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite-martensite dual phase steel sheets. Mater. Sci. Eng. A 518, 1–6 (2009)

    Article  CAS  Google Scholar 

  34. M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging. Acta Mater. 59, 658–670 (2011)

    Article  CAS  Google Scholar 

  35. N.J. Kim, G. Thomas, Effects of morphology on the mechanical behavior of a dual phase Fe/2Si/0.1 C steel. Metall. Trans. A 12, 483–489 (1981)

    Article  CAS  Google Scholar 

  36. M. Jafari, S. Ziaei-Rad, N. Saeidi, M. Jamshidian, Micromechanical analysis of martensite distribution on strain localization in dual phase steels by scanning electron microscopy and crystal plasticity simulation. Mater. Sci. Eng. A 670, 57–67 (2016)

    Article  CAS  Google Scholar 

  37. N. Saeidi, F. Ashrafizadeh, B. Niroumand, Development of a new ultrafine grained dual phase steel and examination of the effect of grain size on tensile deformation behavior. Mater. Sci. Eng. A 599, 145–149 (2014)

    Article  CAS  Google Scholar 

  38. A. Karmakar, M. Ghosh, D. Chakrabarti, Cold-rolling and inter-critical annealing of low-carbon steel: effect of initial microstructure and heating-rate. Mater. Sci. Eng. A 564, 389–399 (2013)

    Article  CAS  Google Scholar 

  39. M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging. Acta Mater. 59, 658–670 (2011)

    Article  CAS  Google Scholar 

  40. J. Zhang, H. Di, Y. Deng, R.D.K. Misra, Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite–ferrite dual phase steel. Mater. Sci. Eng. A 627, 230–240 (2015)

    Article  CAS  Google Scholar 

  41. F.P. Bowden, D. Tabor, The Friction and Lubrication of Solids (Clarendon, Oxford, 1954)

    Google Scholar 

  42. A. Jourani, Effect of roughness geometries in contact mechanics. Int. J. Mater. Prod. Technol. 51(2), 127–138 (2015)

    Article  Google Scholar 

  43. A.P. Mercer, I.M. Hutchings, The deterioration of bonded abrasive papers during the wear of metals. Wear 132, 77–97 (1989)

    Article  CAS  Google Scholar 

  44. A. Jourani, A new 3D numerical model of rough contact: influence of mode of surface deformation on real area of contact and pressure distribution. ASME J Tribol. 137(1), Art No. 011401 (2014)

    Article  Google Scholar 

  45. A. Jourani, M. Bigerelle, L. Petit, H. Zahouani, Local coefficient of friction, subsurface stresses and temperature distribution during sliding contact. Int. J. Mater. Prod. Technol. 38(1), 44–56 (2010)

    Article  CAS  Google Scholar 

  46. S. Bhowmick, B.K. Show, Effect of prior heat treatment on wear behaviour of 0·23% carbon dual phase steel. Can. Metall. Q. 53(1), 93–99 (2014)

    Article  CAS  Google Scholar 

  47. J.J. Coronado, A. Sinatora, Effect of abrasive size on wear of metallic materials and its relationship with microchips morphology and wear micromechanisms: part 1. Wear 271, 1794–1803 (2011)

    Article  CAS  Google Scholar 

  48. D.V. De Pellegrin, A.A. Torrance, E. Haran, Wear mechanisms and scale effects in two-body abrasion. Wear 266, 13–20 (2009)

    Article  CAS  Google Scholar 

  49. A. Jourani, A. Dellaleau, M. Dursapt, F. Sidoroff, H. Zahouani, Effect of local slopes of roughness during contact between solids. Rev. Eur. Elem. 14(2–3), 271–286 (2005)

    Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jourani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trevisiol, C., Jourani, A. & Bouvier, S. Effect of Martensite Morphology on Tribological Behaviour of a Low-Alloy Steel. Metallogr. Microstruct. Anal. 8, 123–134 (2019). https://doi.org/10.1007/s13632-018-0503-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-018-0503-9

Keywords

Navigation